
IN DEGREE PROJECT COMPUTER SCIENCE AND ENGINEERING,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2017

Post-quantum algorithms for
digital signing in Public Key
Infrastructures

MIKAEL SJÖBERG

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF COMPUTER SCIENCE AND COMMUNICATION

Post-quantum algorithms for digital
signing in Public Key Infrastructures

MIKAEL SJÖBERG

Master in Computer Science
Date: June 30, 2017
Supervisor at PrimeKey: Markus Kilås
Supervisor at KTH: Douglas Wikström
Examiner: Johan Håstad
Swedish title: Post-quantum-algoritmer för digitala signaturer i Public Key
Infrastructures
School of Computer Science and Communication

i

Abstract

One emerging threat to Public Key Infrastructures is the possible development of large-
scale quantum computers, which would be able to break the public-key cryptosystems
used today. Several possibly post-quantum secure cryptographic algorithms have been
proposed but so far they have not been used in many practical settings. The purpose of
this thesis was to find post-quantum digital signature algorithms that might be suitable
for use in Public Key Infrastructures today.

To answer the research question, an extensive literature study was conducted where
relevant algorithms were surveyed. Algorithms with high-grade implementations in dif-
ferent cryptographic libraries were benchmarked for performance. Hash-based XMSS
and SPHINCS, multivariate-based Rainbow and lattice-based BLISS-B were benchmarked
and the results showed that BLISS-B offered the best performance, on par with RSA and
ECDSA. All the algorithms did however have relatively large signature sizes and/or key
sizes.

Support for post-quantum digital signature algorithms in Public Key Infrastructure
products could easily be achieved since many algorithms are implemented in crypto-
graphic libraries. The algorithms that could be recommended for use today were SPHINCS
for high-security applications and possibly BLISS-B for lower security applications requir-
ing higher efficiency. The biggest obstacles to widespread deployment of post-quantum
algorithms was deemed to be lack of standardisation and either inefficient operations
compared to classical algorithms, uncertain security levels, or both.

ii

Sammanfattning

Ett nytt hot mot Public Key Infrastructures är den möjliga utvecklingen av storskaliga
kvantdatorer som kan knäcka de asymmetriska kryptosystem som används idag. Ett fler-
tal eventuellt kvantsäkra algoritmer har presenterats men de har än så länge inte sett
mycket praktisk användning. Målet med detta examensarbete var att försöka identifie-
ra eventuellt kvantsäkra signaturalgoritmer som skulle kunna lämpa sig för användning i
Public Key Infrastructures idag.

För att besvara forskningsfrågan gjordes en utredande litteraturstudie där relevan-
ta signaturalgoritmer identifierades. Därefter prestandatestades de algoritmer som var
implementerade i kryptografiska bibliotek. De algoritmer som prestandatestades var de
hash-baserade algoritmerna XMSS och SPHINCS, flervariabel-baserade Rainbow och
gitter-baserade BLISS-B. Resultaten visade att BLISS-B hade bäst prestanda och att pre-
standan var i nivå med RSA och ECDSA. Samtliga algoritmer hade emellertid relativt
stora signatur- och/eller nyckelstorlekar.

Eventuellt kvantsäkra algoritmer skulle redan idag kunna stödjas i Public Key In-
frastructures eftersom många algoritmer finns implementerade i kryptografiska bibliotek.
SPHINCS kunde rekommenderas när hög säkerhet krävs medan BLISS-B möjligtvis skul-
le kunna användas när lägre säkerhet kan tolereras i utbyte mot bättre prestanda. Största
hindren för utbredd användning ansågs vara en brist på standardisering samt ineffektiva
operationer jämfört med klassiska algoritmer och/eller tveksamma säkerhetsnivåer.

Contents

Contents iii

1 Introduction 1
1.1 Background . 1
1.2 Problem statement . 2
1.3 Aim . 2
1.4 Research question . 3
1.5 Limitations . 3
1.6 Outline . 3

2 Public Key Infrastructure 5
2.1 X.509 certificates . 6

2.1.1 X.509 certificate generation . 7
2.1.2 X.509 certificate validation . 7
2.1.3 X.509 certificate revocation . 10

2.2 Applications relying on PKI . 11
2.2.1 Internet (TLS) . 11
2.2.2 E-mail (S/MIME) . 11
2.2.3 Code, document and file signing . 12

2.3 The future of PKI . 12

3 Post-quantum cryptography 14
3.1 The quantum threat . 14
3.2 Security level estimation . 16
3.3 Hash-based signature schemes . 16

3.3.1 XMSS and XMSSMT . 18
3.3.2 SPHINCS . 20

3.4 Lattice-based signature schemes . 21
3.4.1 BLISS . 22

3.5 Multivariate-based signature schemes . 24
3.5.1 Rainbow . 24
3.5.2 HFEv- scheme Gui . 25

3.6 Code-based cryptography . 26
3.7 Isogeny-based cryptography . 27

iii

iv CONTENTS

4 Methodology 28
4.1 Literature study . 28

4.1.1 Literature sources and scepticism . 29
4.2 Algorithm evaluation . 29
4.3 Considered methodologies . 30

5 Literature study results 32
5.1 Signature algorithm requirements for use in PKI 32

5.1.1 Performance requirements . 32
5.1.2 Size requirements . 33

5.2 Algorithm properties . 34
5.2.1 Security levels . 35
5.2.2 Signature and key sizes . 36
5.2.3 Available implementations . 36
5.2.4 Limitations of hash-based signatures 37

6 Performance evaluation 38
6.1 Benchmark descriptions . 38
6.2 Benchmark results . 39

6.2.1 Relative performance . 40
6.3 Possible error sources . 42
6.4 Post-quantum X.509 certificates . 43

7 Discussion 45
7.1 Discussion on post-quantum algorithms . 45

7.1.1 Hash-based algorithms . 45
7.1.2 Lattice-based algorithms . 47
7.1.3 Multivariate-based algorithms . 47

7.2 Post-quantum algorithms for certificate signing 47
7.2.1 Recommendations for the PKI community 48

7.3 Transitioning to a post-quantum PKI . 49
7.3.1 Ethical and environmental aspects . 50

8 Conclusions 51
8.1 Future work . 51

Bibliography 53

A Full benchmark results 58

Chapter 1

Introduction

This chapter gives an introduction and a short background to the relevance of the the-
sis. The problem statement, aim of the thesis and the chosen research question are also
presented. Additionally, some limitations imposed on the thesis are explained and moti-
vated.

1.1 Background

Cryptography is used in all kinds of applications today where secure communication is
wanted. Cryptographic encryption and signature algorithms are used to try to ensure
confidentiality, integrity and authenticity of messages sent during communication [1].
One form of cryptography is known as public-key cryptography, where each entity has a
private key and a public key. In a public-key signature scheme, the signer has a private
signing key that can be used to sign messages. The public key, which can be shared with
anyone, can be used to verify that the signature is valid and, if the signature scheme is
secure, that no one but the signer could have generated the signature.

In order to bind identities to public keys, Public Key Infrastructures (PKIs) are often
used. Certificate Authorities (CAs) are a central part of PKIs. A CA is a mutually trusted
party that uses digital signature algorithms to sign certificates containing a public key
and information of its owner [2]. This allows anyone who trusts the CA to also trust the
public key by verifying that the certificate has a valid signature.

The security of public-key cryptography is based on number theoretic problems that
are thought to be hard to solve for anyone without access to the information available
in the private key. One example is the public-key algorithm RSA, which is based on the
hardness of prime factorisation of large integers. It must be noted that there are no proofs
that RSA or any other cryptographic algorithm is completely secure. Instead, the RSA al-
gorithm has been under scrutiny for decades without any major breakthroughs in solv-
ing the factorisation problem efficiently, which makes most people believe that it is se-
cure. The security of public-key cryptography used today might however be at risk by a
new emerging threat: quantum computers.

During the last few years there have been several advances in research on developing
quantum computers [3]. There are even small-scale quantum computers available to the
public today [4]. If a large-scale quantum computer is built in the future, the public-key
cryptosystems that are in use today would be broken by an algorithm developed by Shor
[5] in 1994. This is because Shor’s algorithm is capable of factorising integers and finding

1

2 CHAPTER 1. INTRODUCTION

discrete logarithms, the cornerstones of traditional public-key cryptosystems, in polyno-
mial time.

Researchers have estimated that quantum computers capable of breaking RSA-2048
might be available in 2030 at a cost of approximately one billion dollars, something the
National Institute of Standards and Technology (NIST) sees as a serious threat to current
cryptosystems [6]. The European Telecommunications Standards Institute (ETSI) has been
even more cautious by recommending any organisation with a need to archive encrypted
data longer than 2025 should be worried about quantum computers [3]. To counteract
this threat, standardisation institutes have started looking at standardising post-quantum
algorithms, i.e. algorithms that are thought to be safe from attacks from quantum com-
puters [6, 3]. NIST has started the process by calling for post-quantum algorithm propos-
als to be standardised, ending in December 2017 [7].

Deployments of post-quantum algorithms in vendor applications have been rare,
most likely due to lack of confidence in the security of post-quantum algorithms. Post-
quantum algorithms also often have worse efficiency compared to currently used algo-
rithms and no post-quantum algorithm has so far been standardised. One way to pro-
mote further research and guide standardisation might be to develop proof-of-concepts
where post-quantum algorithms are implemented in existing software solutions. Several
such proof-of-concepts for post-quantum key-exchange algorithms have been developed,
for example for TLS [8] and OpenVPN [9], but so far few are available for digital signing
in Public Key Infrastructures.

1.2 Problem statement

Even though the number of available post-quantum digital signature algorithms is large,
there had been no research on their practical usability in PKIs prior to this thesis. Thus
the problem at hand was to survey the large number of post-quantum algorithms avail-
able in order to find some candidate algorithms that could be implemented by the PKI
community in a near future. This involved finding the necessary requirements on a dig-
ital signature algorithm used in a PKI. In addition to finding specific algorithms, iden-
tifying characteristic properties of some algorithm families was deemed to be helpful in
order to guide PKI community in finding suitable algorithms for the future.

1.3 Aim

The aim of this thesis is to survey the post-quantum digital signature algorithms avail-
able today in regards to their usability in digital signing in PKI. Using the results from
the survey are to be used to identify several candidate algorithms suitable for digital
signing in PKI and that could be implemented in PKI vendor products in a near future.
The suitability will be determined by studying the code availability in cryptographic li-
braries, benchmarking the performance of the algorithms and comparing it to the needs
of PKIs and applications relying on PKIs.

By analysing and comparing several post-quantum algorithms for a specific use case
it could be possible to identify important requirements for post-quantum algorithms
in PKI. The results could also give a better understanding about what the largest hin-
drances are to widespread deployment of post-quantum algorithms.

CHAPTER 1. INTRODUCTION 3

In addition, proofs-of-concept X.509 certificate are to be generated and signed using
post-quantum digital signature algorithms. Showing the proofs-of-concept could hope-
fully help drive research and company interest forward in the field of post-quantum
cryptography.

1.4 Research question

The research question studied in this thesis is:

What post-quantum digital signature algorithms available today are suitable for digital
signing in Public Key Infrastructures?

The research question was deemed broad enough to encompass surveying a large
number of post-quantum digital signature algorithms while still being limited enough
to find concrete results. The thesis focuses on digital signing in PKI in order to find algo-
rithms suitable for a specific use case. Post-quantum encryption and key-exchange algo-
rithms are other interesting and relevant topics for PKI that were left for future work.

1.5 Limitations

For a post-quantum digital signature algorithm to be considered suitable for deployment
in PKI today it must have a working implementation. Algorithms without publicly avail-
able, high-grade implementations were surveyed and discussed but not included in the
performance benchmarks.

Studying the security of post-quantum algorithms in depth by performing cryptanal-
ysis is also outside of the scope of this thesis. The algorithms considered therefore had
to have estimated security levels for both classical and quantum security. Security levels
were determined by examining the original papers and any eventual cryptanalyses done
by other researchers.

Due to a limited amount of time and resources available for this thesis, all available
post-quantum digital signature algorithms could naturally not be researched in detail. In
order to still have a good survey coverage, algorithms from the most widely recognised
categories of post-quantum algorithms were researched to at least some extent in order
to find good candidate algorithms.

1.6 Outline

In Chapter 2, the concept of Public Key Infrastructures is presented. The focus lies on
PKIs using X.509 certificates.

In Chapter 3, the concept of post-quantum cryptography is explained. This includes
explaining how and why currently used cryptosystems can be broken by quantum com-
puters. Shor’s algorithm and Grover’s algorithm are explained briefly. Furthermore, sev-
eral post-quantum digital signature algorithms are explained with some technical details
omitted. For more in-depth information about an algorithm, the reader is directed to the
literature.

In Chapter 4, the methodology used to produce the results of the thesis are presented.
It includes an extensive literature study providing necessary background knowledge on

4 CHAPTER 1. INTRODUCTION

PKIs and post-quantum cryptography. Empirical data was gathered from a performance
benchmark on some of the algorithms identified during the literature study.

In Chapter 5, requirements on a digital signature algorithm used in a PKI are identi-
fied and ranked. The post-quantum algorithms chosen for further analysis from the liter-
ature study are compared with regards to security levels, signature sizes, key sizes and
code availability.

In Chapter 6, the performance benchmark is explained and the empirical evidence
consisting of experimental data is presented. The benchmark measured average running
times, median running times and sample standard deviations for key generation, signa-
ture generation and signature verification using four different post-quantum algorithms:
XMSS, SPHINCS, Rainbow and BLISS-B.

In Chapter 7, discussions about the benchmark results are presented together with
more general discussions about post-quantum algorithms in PKI. Some recommendations
for the PKI community are also presented.

In Chapter 8, some concluding remarks and ideas for future work are presented.

Chapter 2

Public Key Infrastructure

Public Key Infrastructures (PKIs) are used to ensure the efficient and secure management
of cryptographic public key pairs during their whole life cycle [2]. The life cycle of a key
pair can be divided into three steps: Key generation, key usage, and key invalidation.

In the key generation step, a new key pair is created. This can be done either by the
end-entity, by hardware such as smart-cards or Hardware Security Modules (HSMs), or
by some authority in the PKI [2]. Regardless of how the key pair is generated, the PKI
must ensure that the key pairs are secure. If end-entities generate their own key pairs
they can prevent the private keys from being exposed to any unauthorised persons.

In the key usage step, digital signature and encryption operations are performed us-
ing the key pair previously generated [2]. Signing and decryption is done using pri-
vate keys while signature verification and encryption is performed using public keys.
In this step, the PKI must ensure that end-entities can access the public keys of other
end-entities in order to verify signatures and encrypt data. The PKI must also make it
possible for end-entities to verify the authenticity and validity of a public key, as well as
knowing its properties. Properties might for example be the allowed key usage or the
security policy applied when generating the key.

In the key invalidation step, the key pair becomes invalid for some reason. Such rea-
sons might be that the validity period of a key pair has ended or that a private key has
been compromised [2]. A key pair can for example be compromised by a smart-card be-
ing stolen, a computer being infected by malware or, relevant to this thesis, if the under-
lying cryptosystem has been broken by a quantum computer. When key pairs have been
compromised, the PKI should make sure that all users are made aware of the compro-
mise and stop using and trusting the compromised keys.

One of the most common ways of storing and distributing public keys is in the form
of certificates. More specifically, the standardised X.509 Public Key Certificate format [10]
is used in many commercial applications [2]. Other types of certificates exist as well but
in this thesis the focus lies on X.509 certificates. Certificates are used to bind public keys
to entities. This means that the identity of the certificate owner must be established in a
secure way. This is usually done by a Registration Authority (RA) in the PKI. After the
identity of the entity has been verified, the RA sends the information to a Certification
Authority (CA). Information exchanged between RAs, CAs and other parts of a PKI are
cryptographically protected by encryption or digital signatures. After the CA receives
the information it needs it generates the certificate and signs it using the CA’s private
signing key. Any certificate issued by the CA can later be verified using the CA’s public

5

6 CHAPTER 2. PUBLIC KEY INFRASTRUCTURE

key included in the CA certificate. In a PKI, the CA is seen as a mutually trusted third
party. This makes it possible for entities to trust each other indirectly through their direct
trust in the CA.

2.1 X.509 certificates

The standardised X.509 certificate is a public key certificate format, encoded using the
ASN.1 Distinguished Encoding Rules (DER) [10]. An X.509 certificate consists of the fol-
lowing three elements:

• tbsCertificate - The To-Be-Signed public key certificate

• signatureAlgorithm - An algorithm identifier, consisting of OID and optional parame-
ters, for the signature algorithm used by the CA to sign the certificate

• signatureValue - A bit string containing the value of the digital signature

The minimum contents of an X.509 TBS certificate are:

• version - X.509 certificate version (if not present, version 1 is presumed)

• serialNumber - A unique serial number for each certificate issued by the issuing CA

• signature - An algorithm identifier of the signature that must be the same as signa-
tureAlgorithm

• issuer - Identifies the issuing CA

• validity - Validity period of the certificate

• subject - Identifies the entity associated with the public key stored in the certificate

• subjectPublicKeyInfo - The algorithm identifier describing the public key algorithm
and the value of the public key

Optional contents for X.509v3 certificates are:

• issuerUniqueId

• subjectUniqueId

• extensions - Such as allowed key usage, basic constraints and any custom extension

The X.509 standard does not impose any restrictions on the type of public key or the
digital signature algorithm used for signing the certificate. Furthermore, the X.509 stan-
dard allows arbitrary length signatures and public keys. This makes X.509 certificates
highly flexible when transitioning to new cryptosystems. However, other protocols might
impose certain size limitations on X.509 fields [3].

CHAPTER 2. PUBLIC KEY INFRASTRUCTURE 7

2.1.1 X.509 certificate generation

A certificate is generated after a certification application has been initiated by some entity
in the PKI [2]. The application is followed by a registration, for which the RA is respon-
sible, where the identity of the certificate owner and all other information relevant to is-
suing a certificate is collected and verified. The RA then forwards this information to the
CA that is to issue a certificate.

In addition to the registration information, the CA needs the public key that is to be
included in the certificate before a certificate can be issued. This is either done by hav-
ing the CA generate the key pair or by letting the end-entity generate it and present the
public key to the RA during registration. One way to apply for a certificate while keep-
ing the private key hidden from the CA is to issue a Certificate Signing Request (CSR),
such as PKCS#10 [11], to a CA. The CSR contains information about the applicant and
the public key to be included in the certificate. A PKCS#10 CSR is self-signed using the
corresponding private key.

With the registration information and the public key of the certificate owner, the CA
can issue the certificate. This is done by digitally signing the certificate using the CA’s
private signing key. After the certificate has been issued and verified to be correct by the
certificate owner, it can be distributed and used by other entities.

Decryption keys and signature keys should be different and consequently, the corre-
sponding encryption keys and signature verification keys should be stored in separate
certificates. In the case of RSA keys, incorrect usage of the same key pair for decryp-
tion and signing could lead to an adversary being able to decrypt messages by tricking
the signer into signing encrypted messages. Another reason for having different keys is
to enable key escrow for decryption keys. Key escrow means that the private key is not
only stored by end-entities but also by another trusted party [2]. This is a safety measure
to make sure that encrypted data can be accessed even if an entity loses its private de-
cryption key. However, in order to maintain the non-repudiation property, private sign-
ing keys are usually not held in key escrow. This is because the consequence of losing a
private signing key is simply that a certificate must be issued for a new key pair.

2.1.2 X.509 certificate validation

The validity of certificates needs to be verified to ensure that the public key does in fact
belong to the certificate owner. Verification is performed by verifying the certificate sig-
nature, checking the validity period of the certificate and the revocation status [2].

To verify a certificate signature, the verifier uses the issuer’s public key, obtained
from the issuing CA’s certificate. Different digital signature algorithms can be used for
signing and verification of certificates in a PKI. Two signature schemes commonly used
today are RSA and the Elliptic Curve Digital Signature Algorithm (ECDSA).

RSA RSA is an encryption algorithm that can also be used for digital signatures. The
security of RSA is based on the hardness of prime factorisation of large integers [12].
An RSA key pair consists of a public encryption key (e, n) and a private decryption key
(d, n), where e, d and n are positive integers. A message M is represented as an integer
between 0 and n−1, where longer messages are split into series of such blocks. A cipher-
text C is generated by calculating:

C ≡M e mod n

8 CHAPTER 2. PUBLIC KEY INFRASTRUCTURE

The ciphertext C is decrypted by calculating:

M ≡ Cd mod n

This works due to the mathematical relationships between e, d and n explained briefly
below.

The modulus n is the product of two large, randomly chosen, primes p and q. For
example, in the RSA-3072 scheme, n is a 3072-bit integer. The value of d is chosen to be a
large, random integer that is relatively prime to (p− 1)(q− 1). The value of e is computed
from p, q and d to be the multiplicative inverse of d modulo (p − 1)(q − 1). This means
that:

e · d ≡ 1 mod (p− 1)(q − 1)

If these properties are fulfilled then the encryption scheme works because:

Cd ≡ (M e)d ≡M e·d ≡M mod n

RSA can be used as a digital signature scheme by using RSA encryption “in reverse”.
The general idea is that to sign a message M , the signer will first compute a message
hash h = H(M) using some cryptographic hash function H . The signer then encrypts the
message hash h using the signer’s private decryption key to obtain h′. The signed mes-
sage (M,h′) is sent to the verifier. A verifier can then verify the message by decrypting
h′ using the signer’s public key and verifying that it is equal to the message hash of M .
This works due to the special property of RSA that:

E
(
D(M)

)
= D

(
E(M)

)
,

where E is the encryption operation and D is the decryption operation.
To make the signature scheme properly secure an advanced padding scheme, as spec-

ified in the PKCS#1 specification [13], should be used. In order to speed up the sign-
ing operation, RSA private keys today usually contain several additional values. In the
PKCS#1 specification, an RSA private key contains:(

n, e, d, p, q, (d mod (p− 1)), (d mod (q − 1)), (q−1 mod p)
)

This means that for RSA-3072, the private key becomes roughly 1728 bytes. The public
key is (n, e), which produces a public key of roughly 384 bytes. This is because in prac-
tice e is usually chosen to be a small integer, such as 3 or 65537, which speeds up the
verification operation.

ECDSA The Elliptic Curve Digital Signature Algorithm (ECDSA) is a signature algo-
rithm based on the hardness of solving discrete logarithms in elliptic curve groups [14].
Prior to using ECDSA, the signer and verifier must decide on a set of elliptic curve do-
main parameters to be used. A large number of standardised curves exist and are used
today but it is also possible to use custom curves. One standardised curve is the curve
NIST P-256, also known as secp256r1 or prime256v1, where all operations are performed
modulo a 256-bit prime integer.

To generate an ECDSA key pair the signer first chooses a random secret integer:

d ∈ {1, n− 1},

CHAPTER 2. PUBLIC KEY INFRASTRUCTURE 9

which acts as the private key in the scheme. The public key is an elliptic curve point Q =

dG, where G is the base point generator of an elliptic curve group.
To sign a message, a random value k ∈ {1, n − 1} is first selected. An elliptic curve

point is then computed as:
kG = (x1, y1)

One of the signature values, r, is then computed as:

r = x1 mod n

If r happens to be equal to 0, the process is repeated with a new random value k. A
method for converting field elements to integers exists making the previous computation
possible. The signer then proceeds by computing e = H(m), where H is a cryptographic
hash function. Finally, the signature value s is computed as:

s = k−1(e+ dr) mod n

If s = 0, a new k is chosen and the whole process is repeated. Otherwise, the signature
generation is successful and the signature (r, s) is returned.

To verify this signature, the verifier first ensures that:

r, s ∈ {1, n− 1}

A hash value e = H(m) and the two values

u1 = es−1 mod n

u2 = rs−1 mod n

are then computed. An elliptic curve point

X = u1G+ u2Q

is computed and, if X = (x1, y1) is not equal to the identity element, the value

v = x1 mod n

is computed. A signature is accepted if v = r. The signature verification is valid since:

k ≡ s−1(e+ dr) ≡ s−1e+ s−1rd ≡ u1 + u2d (mod n)

and since:
u1G+ u2Q = (u1 + u2d)G = kG,

it is required that v = r for a signature to be valid.
For ECDSA over the curve NIST P-256 with n = 256, the public key size is 2n = 512

bits and the private key size is 768 bits since the private key usually contains both d and
Q. Signatures are two n-bit integers, making the signature size 512 bits.

10 CHAPTER 2. PUBLIC KEY INFRASTRUCTURE

RootCA

CA2

CA3

CarlBob

CA1

Alice

Figure 2.1: A hierarchical CA structure

Trust models A common trust model used in PKIs is the hierarchical trust model [2]. In
a hierarchical PKI, trust in public keys depends on the trust of a uniquely determined
certificate signer, a trust anchor. The trust anchor is an entity that all entities directly
trust. The trust anchor is often called the root CA whilst other CAs in the same hierar-
chy are called intermediate CAs. In order to validate a certificate, the verifier must have
an unbroken chain of certificates from the certificate to be verified to the trust anchor.

Figure 2.1 shows an example where the trust anchor and root CA is RootCA, nodes
CA1-3 are intermediate CAs and leaf nodes are end-entities. It can be assumed that all
entities trust RootCA and is in possession of RootCA’s certificate.

If the user Alice wants to validate the certificate of Bob, Alice must be in possession
of the certificates of RootCA, CA2 and CA3. In many protocols, this is achieved by Bob
providing a certificate chain to Alice, consisting of his own certificate and all CA certifi-
cates up to the root CA. The root CA certificate is in many cases not transferred since it
is assumed that everyone in the PKI is already in possession of it. Alice can then verify
the authenticity of Bob’s certificate by first verifying that the certificate signature in Bob’s
certificate was signed by CA3. Alice then verifies that CA3’s certificate was signed by
CA2. Lastly, Alice verifies that CA2’s certificate was signed by RootCA and if all signa-
tures were valid, Alice trusts Bob’s certificate through her trust in RootCA.

In the case that Bob wants to communicate with Carl, CA3 can be seen as a root CA
since it is trusted by both parties.

2.1.3 X.509 certificate revocation

Certificate revocation, the invalidation of public keys, can be done in a variety of ways.
Two commonly used ways are distribution of Certificate Revocation Lists (CRLs) [10] and
offering an online service with the Online Certificate Status Protocol (OCSP) [15].

A CRL is a list of identifiers for all certificates issued by a CA that have been revoked
[2]. To prove the authenticity of the CRL, it is digitally in a similar way to X.509 certifi-
cates. CRLs can be directly signed by the CA who issued the revoked certificates or in-
directly by an appointed CRL issuer. The CRL must be made available to all entities that
perform authentication and updated periodically to ensure that no entities incorrectly
trust a revoked certificate. A verifier will download the CRL, verify the signature and
then check if a specific certificate is in the CRL.

One drawback of CRLs is that they increase in size and can become quite large over
time if expired certificates are not removed [2]. One solution to this problem is to use
delta-CRLs, containing only identifiers for certificates that have been revoked since a
certain complete CRL was issued, the Base CRL. Delta-CRLs need to be signed with the

CHAPTER 2. PUBLIC KEY INFRASTRUCTURE 11

same signature key used to sign the Base CRL. By issuing delta-CRLs it is possible to is-
sue smaller updates to the CRL with a higher frequency.

A CA using OCSP will instead have an online service that entities can query to learn
the revocation status of a specific certificate [15]. All OCSP responses need to be digitally
signed. One advantage of using OCSP is that a verifier only needs to fetch information
about the specific certificate to be verified (in contrast to CRLs where information about
all revoked certificates are retrieved). Furthermore, information about a revoked certifi-
cate can be retrieved almost immediately after it has been revoked instead of having to
wait for a new CRL to be released.

2.2 Applications relying on PKI

PKIs are used for a broad number of applications that require authentication of entities
and public key distribution. This section will describe a number of such applications in
order to better understand the practical requirements of the signature algorithm used in
a PKI.

2.2.1 Internet (TLS)

One important use of PKIs today is maintaining certificates for use in the TLS protocol
[16] on the Internet. The TLS protocol supports confidential and authenticated channels
between clients and servers [2]. TLS is used in combination with a multitude of other
protocols such as HTTPS, IMAP, SMTP and FTP. The HTTPS protocol uses TLS to au-
thenticate web servers and establish secure communication between a connecting client
and the server by exchanging a symmetric session key. During the TLS handshake, the
server’s certificate and any intermediate CA certificate’s are transferred to the client. The
client then verifies the server certificate by verifying the whole certificate chain leading
up to a root CA that the client knows and trusts.

TLS can also be used for mutual authentication by requiring client authentication,
which is needed when a client needs to verify itself before it can connect to a secure ser-
vice. The client then needs to send a valid certificate to the server during the TLS hand-
shake. Client authentication can for example be used to replace password logins.

The total amount of data sent during the TLS handshake depends on the amount of
certificates that need to be transferred and consequently, the size of signatures and public
keys contained in those certificates. For server authentication, the certificate of the server
along with all certificates up to the root certificate, the certificate chain, must be sent to
the client [16]. The server can choose to not send the root certificate because it is pre-
sumed that it has already been distributed to the client in some other way, for example
coupled with a web browser installation or operating system. For client authentication,
the client also needs to send its own certificate along with its certificate chain.

2.2.2 E-mail (S/MIME)

A common method for enabling signing and encryption of e-mails is to use the security
standard: Secure/Multipurpose Internet Mail Extensions (S/MIME) [17, 18]. S/MIME
allows users to have confidential e-mail communication and verify both authenticity and
integrity of e-mails.

12 CHAPTER 2. PUBLIC KEY INFRASTRUCTURE

A sender will sign an e-mail using its private signing key. Encryption of an e-mail is
performed using the recipients public encryption key found in the recipient’s certificate.
The sender can then send the e-mail to the recipient who can decrypt the e-mail and ver-
ify the sender.

Certificate distribution in S/MIME can be performed in several different ways. The
simplest form of distribution is to manually distribute the certificate to all recipients. The
certificate can also be sent by the sender as an e-mail attachment when establishing first
contact. A more scalable solution is for the recipient to do a database or directory lookup
to find certificates.

To minimise data transfers, certificates are often stored in the recipient’s e-mail client.
The recipient must however still verify the validity of the stored certificate by retrieving
revocation information from the CA.

2.2.3 Code, document and file signing

Code signing is the process of digitally signing software distributions, including software
updates, to ensure authenticity and integrity of the software [2]. Code signing helps pro-
tect against viruses and Trojan horses since a user can verify that downloaded software
comes from the correct source and has not been tampered with.

Similarly to code signing, document signing and file signing is used to ensure authen-
ticity and integrity of various documents and files. The most prominent example is legal
documents which can be signed using a digital signature instead of a physical signature
in many countries [2].

In order to allow Long-Term Validation, validation of signatures that are valid even
after the signer certificate has expired, a Time-Stamping Authority (TSA) can be used.
The TSA is used to timestamp a datum to provide a proof-of-existence at a certain point
in time [19]. The timestamping process can be used to verify that a valid digital signa-
ture existed at a certain point in time. In this process, the trust is transferred from the
original signer to the TSA.

Signing services and TSAs might have certain customer or regulatory requirements
on the signature generation time. For example, a TSA needs to provide timestamps with
an accuracy of 1 second or better as specified in [20].

2.3 The future of PKI

With the emerging Internet of Things (IoT) trend, the need to secure potentially billions
of devices on the Internet has become apparent and one way to do it is by the use of
PKI. For example, CSS predicts that PKI will emerge as the best practice for identifica-
tion, authentication and secure communications for IoT devices [21]. They also state that
this will increases the need to find scalable, cost-effective and efficient solutions for se-
cure authentication using PKI.

There is also a need to find scalable solutions for the many connected vehicles and
one way to do it is with a vehicular PKI. Different methods have been proposed to pro-
tect the privacy of connected vehicle owners [22]. One proposed method is to have CAs
periodically issue a batch of short-lived certificates for each vehicle. The short-lived cer-
tificates would then be used for only a short time before being discarded in order to
make it difficult for an adversary to track a specific vehicle. This does however increase

CHAPTER 2. PUBLIC KEY INFRASTRUCTURE 13

the importance of having an efficient CA and consequently, an efficient signature algo-
rithm.

The PKI architecture will most likely continue being relevant for years to come due
to an increasing number of connected devices. It is therefore important to identify not
only what needs to be done to make PKIs more efficient but also to identify what needs
to be done to secure PKIs from different threats. A big threat to cryptography in gen-
eral, which means it is also a threat to PKI, is the threat from quantum computers that
can break the currently used cryptographic algorithms. The quantum threat and ways to
protect against it are presented in the next chapter.

Chapter 3

Post-quantum cryptography

Post-quantum cryptography, also known as quantum-safe or quantum-resistant cryptog-
raphy, is cryptography using cryptosystems that are thought to be secure against algo-
rithms running on quantum computers. The security of public-key cryptosystems used in
practice today depends on number theoretic problems that are deemed to be intractable
on classic computers [23]. The two most commonly used number theoretic problems are
prime number factorisation of large integers and finding discrete logarithms, which are
problems that have been studied for a long time. Cryptosystems based on these prob-
lems include RSA, DSA, and ECDSA. A large-scale quantum computer would be able
to break all these widely used cryptosystems in polynomial time using a quantum algo-
rithm known as Shor’s algorithm [5]. Key-exchange protocols such as Diffie-Hellman and
Elliptic Curve Diffie-Hellman are also broken by future quantum computers since they
rely on the same discrete logarithm problems.

Symmetric key cryptography schemes such as AES are also at risk by Grover’s algo-
rithm [24], a quantum search algorithm with quadratic speedup compared to classical
search algorithms [23]. However, the threat is not as critical since it can easily be coun-
tered by doubling the key length. For example, using AES-256 instead of AES-128 will
ensure 128-bit security against quantum adversaries. The same search algorithm can be
applied to hash functions so using hash functions with larger output sizes is necessary to
protect against quantum attacks.

In the remainder of this chapter the basics of quantum computers and quantum al-
gorithms are explained. Furthermore, a large set of post-quantum digital signature algo-
rithms are explained. Hash-based, lattice-based and multivariate-based signature schemes
are explained in more detail while code-based and elliptic curve isogeny-based signature
schemes are only touched upon briefly.

3.1 The quantum threat

The quantum threat to cryptography comes from the many recent advancements in the
field of quantum computing. No one knows exactly when large-scale quantum comput-
ers will be available or even if a large-scale quantum computer can be built. However,
recent advances in the field have led some to believe that the time until large-scale quan-
tum computers are available might be as soon as the year 2025 [3].

Quantum computers are computers based on quantum mechanics and the state of
quantum computers can not be described by a single string of bits in the same way as

14

CHAPTER 3. POST-QUANTUM CRYPTOGRAPHY 15

classical computers can be [23]. Instead, the state of a quantum computer is expressed
using quantum bits, or qubits. Qubits are more powerful in the sense that they allow a
quantum computer to be in a superposition of states, compared to classical computer
which are limited to being in a single state. Quantum algorithms make use of this and
transforms all the states at once. These properties enable a quantum computer to run al-
gorithms that can solve problems deemed intractable for classical computers, which are
restricted to a single state.

The reason quantum computers are considered a threat to current public-key cryp-
tosystems is mainly because of two proposed quantum algorithms: Shor’s algorithm [5]
and Grover’s algorithm [24]. The general ideas behind the two algorithms are explained
briefly below.

Shor’s algorithm The quantum algorithm known as Shor’s algorithm [5] can be used
factor integers and find discrete logarithms in polynomial time using a quantum com-
puter. This is an exponential speedup compared to the best known classical algorithm,
the number field sieve, which runs in sub-exponential time.

The algorithm for factorisation makes use of the fact that the factorisation of n can
be reduced to finding the order of an element x in the multiplicative group (mod n). In
other words, finding r such that:

xr ≡ 1 (mod n)

The algorithm chooses a random integer x (mod n) and finds its order r in polynomial
time using a quantum computer. The algorithm then computes:

gcd(xr/2 − 1, n),

where gcd is the Greatest Common Divisor. Due to the following relationship:

(xr/2 − 1)(xr/2 + 1) = xr − 1 ≡ 0 (mod n),

the value of gcd(xr/2 − 1, n) will only fail to be a non-trivial divisor of n if r is odd or if:

xr/2 ≡ −1 (mod n)

This means that a non-trivial factor will be found with probability at least:

1− 1

2k−1
,

where k is the number of distinct odd prime factors of n. If the algorithm fails, the algo-
rithm can be repeated with a new random integer x.

The algorithm for finding discrete logarithms uses modular exponentiation and a
quantum operation called quantum Fourier transform to find a discrete logarithm in
polynomial time [5]. The algorithm has later been expanded to also find discrete loga-
rithms in elliptic curve groups [25]. The elliptic curve discrete logarithm algorithm was
shown to be more efficient than the factoring algorithm, potentially requiring a quantum
computer with less than half as many qubits for large values of n. For example, factor-
ing a 3072-bit RSA modulus was estimated to require around 6144 logical qubits while
an equally secure 256-bit elliptic curve cryptographic key was estimated to require only
1800 logical qubits to break. It should be noted that for a quantum computer to have a
certain amount of logical qubits, the number of physical qubits will need to be several
times higher.

16 CHAPTER 3. POST-QUANTUM CRYPTOGRAPHY

Grover’s algorithm The quantum algorithm known as Grover’s algorithm [24] is a search
algorithm capable of finding an element in an unordered database of N = 2n elements in
only O

(√
N
)

steps on a quantum computer. This is a quadratic speedup compared to the
classical computer approach, which requires on average N

2 steps using linear search.
The algorithm works by first initialising the system to a distribution with the same

amplitude to be in each of the N number of n-bit states, where the square of the absolute
value of the amplitude in a state equals the probability to be in that state. The algorithm
then repeats a loop of operations O

(√
N
)

times. The operations performed are an eval-
uation of the state by a quantum oracle, a conditional phase rotation depending on the
previous state evaluation and a diffusion transform.

For each iteration of the previously mentioned loop, the amplitude in the desired
state is increased by O

(
1√
N

)
. This means that after O

(√
N
)

iterations, the amplitude
in the desired state reaches O

(
1
)
. When sampling the resulting state it will be in the

desired state, meaning that the searched element has been found, with probability at
least 1

2 .

3.2 Security level estimation

No cryptosystems are proven to be secure against all attacks so the security level of a
cryptographic scheme can only be estimated. Estimating the security of a cryptographic
algorithm is not easy. One common way to present the estimated security level of a cryp-
tographic scheme is to use the notion of bit security. An attack against a cryptographic
scheme with an estimated b-bit security level can be expected to require O

(
2b
)

operations
[26].

The same notion of bit security has been adopted in several papers when talking
about attacks using quantum computers as well. In this thesis, the distinction is made
by using the term classical bit security when talking about adversaries using classical com-
puters and quantum bit security when talking about adversaries with access to quantum
computers.

For most common public-key cryptosystems, the security relies on well-defined math-
ematical problems that are conjectured to be difficult to solve [26]. The security depends
on the fact that no efficient solutions exist to those problems. The bit security measure-
ment is obtained by looking at all known general attacks on the mathematical problem
and the cryptographic scheme as a whole. This naturally means that unknown attacks
might exist, which could potentially make the security non-existent. Confidence in the
security level of an algorithm therefore heavily relies on the underlying building blocks
of an algorithm, their security assumptions and the amount of scrutiny they have been
under.

3.3 Hash-based signature schemes

Like all signature schemes, hash-based signature schemes use cryptographic hash func-
tions [23]. The security of many hash-based signature schemes relies solely on the secu-
rity of the underlying hash function instead of the hardness of a mathematical problem.
It has been shown that one-way functions, such as a cryptographic hash function, is nec-
essary and sufficient for secure digital signatures [27]. This means that hash-based sig-

CHAPTER 3. POST-QUANTUM CRYPTOGRAPHY 17

H0=h(H1||H2)

H2=h(H5||H6)

H6=h(OTSpub
3)

OTSpub
3

OTSpriv
3

H5=h(OTSpub
2)

OTSpub
2

OTSpriv
2

H1=h(H3||H4)

H4=h(OTSpub
1)

OTSpub
1

OTSpriv
1

H3=h(OTSpub
0)

OTSpub
0

OTSpriv
0

Figure 3.1: An example of a small Merkle tree that can be used to sign four messages using OTS key
pairs

nature schemes can be seen as the most fundamental type of digital signature schemes
[23].

Another advantage of hash-based signature schemes is that they are not tied to a spe-
cific hash function [28]. As long as the hash function is considered secure, it is possible
to change it for increased efficiency or security. Hash functions have a limited lifespan,
so being able to replace one without changing the underlying structure contributes to the
longevity of hash-based signature schemes.

Hash-based signature schemes are a relatively old invention, starting with the Lam-
port One-Time Signature (OTS) scheme [29]. In the Lamport OTS scheme, the signer
chooses pairs of random integers that are kept as the private key. The public key is the
hashes of those random integers. To sign a message, the signer reads the message bitwise
and presents one value from each secret integer pair depending on the bit value. The
verifier can then verify that the hash of all secret integers is equal to the corresponding
hash value in the public key.

It is clear that a OTS key pair can be used only once since it reveals information of
the private key. This makes it impractical for many real-world applications. To solve this,
the use of OTS schemes was later expanded upon by Merkle’s tree scheme [30], which
creates a binary hash tree structure in which each leaf represents a OTS key pair. This
makes it possible to sign several messages by using a different OTS key for each mes-
sage, while still having only a single public key for the Merkle tree scheme.

Figure 3.1 shows a small Merkle tree as an example. The public key of a Merkle tree
signature scheme is the value of the root node, H0. The value of a node is equal to the
hashed value of the concatenation of both its child nodes. The values of the lowermost
level of nodes, H3-H6 are equal to the hashed value of a OTS public key. The signature
in a Merkle tree scheme consists of a OTS and an authentication path consisting of the
necessary hash values to reach the root from the leaf, that is one hash value for each
level of the Merkle tree. For example, a signature generated with the private key OTSpriv

0

contains the values H4 and H2 so a verifier can verify that:

h(h(OTSpub
0 ||H4)||H2) = H0

The authentication path proves that the provided OTS public key is in fact a key in the
Merkle tree scheme.

Even though the advantages of hash-based signature schemes seem to be many, there

18 CHAPTER 3. POST-QUANTUM CRYPTOGRAPHY

are some downsides as well. The primary downside is that most hash-based signature
schemes are stateful [28]. This is due to the fact that a OTS key pair can be used only
once and therefore whenever a signature is generated, the private key must be updated
as well. This does not fit common software interfaces, impacts performance and makes
key storage conditions more complicated. Copying or backing up a key must be avoided
or handled with extreme care to not compromise the entire system. Another downside is
that the number of signatures that can be generated from a key pair is limited.

The remainder of this section will explain two promising hash-based signature schemes
that exist today. The two schemes are XMSS [31], which is a stateful scheme, and SPHINCS
[32], which is stateless. The security of both schemes depends only on the properties of
cryptographic hash functions.

3.3.1 XMSS and XMSSMT

XMSS [31], the eXtended Merkle Signature Scheme, is one of many variants of the Merkle
tree scheme and has been prepared for standardisation by describing the algorithm in an
Internet Draft [33]. Several previous variants have been proposed by the same authors
and XMSS can be seen as a more efficient and more secure version of these. The security
of XMSS is based solely on the properties of cryptographic hash functions. More specif-
ically, only a second-preimage resistant function family and a pseudorandom function
family is required. XMSS can also be instantiated to be provably forward secure in the
standard model. Forward security means that even if the private key is compromised,
all signatures created before the compromise remain valid. Forward security can be re-
placed by existential unforgeability under chosen message-attacks to obtain a more effi-
cient scheme.

XMSS uses, just like the Merkle signature scheme, a binary hash tree with OTS key
pairs as leaf nodes [31]. The OTS scheme used is a slightly modified version of Winternitz-
OTS (W-OTS), first proposed in [30]. The modified version eliminates the need for a colli-
sion resistant hash function family.

Public and private keys There are several different ways for increased performance or
smaller size. The smallest XMSS private key consists of only a cryptographic seed for a
pseudorandom function. The pseudorandom function is then used to generate the W-
OTS keys when needed and the leaf index i corresponding to the next W-OTS key pair
to be used. A cryptographic seed for randomised hashing and the public key can also
be part of the private key. An XMSS public key consists of the root node value and bit-
masks used in intermediate levels of the hash tree.

Signature generation To sign a message using XMSS, a current leaf index i is used to
determine which W-OTS key pair should be used [31]. The signature (i,σ,AUTH) con-
sists of the index i, the W-OTS signature σ and the authentication path AUTH for the
leaf node. The authentication path consists of the hash values of H different nodes in the
XMSS tree, one for each layer of the tree. After a message has been signed, the current
leaf index i contained in the XMSS private key is updated.

Signature verification To verify an XMSS signature, the verifier first verifies the W-OTS
signature σ using the corresponding W-OTS public key that is generated by the verifier.

CHAPTER 3. POST-QUANTUM CRYPTOGRAPHY 19

The verifier then verifies the authentication path by traversing the tree using AUTH to
obtain pH . If pH is equal to the root node value in the XMSS public key, the signature is
accepted. If not, the signature is rejected.

Statefulness It is clear that XMSS is stateful since the value i must be updated after
a signature has been generated. Due to this fact, and the fact that there are a limited
number of states, the number of signatures that can be created from a single key pair
is limited. The maximum number of signatures that can be created is 2H , where H is the
height of the XMSS tree. In an Internet Draft for XMSS [33], a number of different pa-
rameter sets are proposed. The value for H in those sets range from 10 to 20, giving a
maximum of roughly a thousand to a million signatures.

XMSSMT XMSSMT [34], Multi Tree XMSS, is an extension of the regular XMSS. To in-
crease the maximum number of signatures, XMSSMT builds several layers of XMSS trees.
The lowermost layers of XMSS trees are used to sign messages while trees on higher lay-
ers are used to sign the roots of XMSS trees on the layer below. Using XMSSMT it is pos-
sible to sign a virtually unlimited number of messages. The downside is that signature
sizes increase and signing operations require more computations.

Attacks, parameter sets and implementations In [35] a multi-target attack against hash-
based signature schemes such as XMSS and SPHINCS is presented and an improved
scheme for XMSS, named XMSS-T, that is not susceptible to multi-target attacks is con-
structed. The attack stems from the fact that the same hash function key is used several
times. For a scheme such as XMSSMT with H = 60, an attacker can learn d = 266 outputs
of the same hash function [35]. An attacker will then be able to invert one of the d values
with probability d/2n instead of the wanted probability 1/2n. This means that if it suf-
fices to invert the hash function on any one out of d outputs to break the security of the
scheme, the attack complexity is reduced from O

(
2n

)
to O

(
2n/d

)
.

To mitigate the attack, XMSS-T uses a new hash tree construction and a new W-OTS
variant. The main idea is that a different hash function key is used for every hash func-
tion call within a hash tree or hash chain. The original XMSS scheme has been discarded
in favour of XMSS-T as can be seen in the Internet Draft for XMSS [33], where XMSS-T is
actually presented.

An example of a parameter set for XMSS is the XMSS_SHA2-256_W16_H10 parame-
ter set proposed in the Internet Draft [33], which aims to provide 256-bit classical secu-
rity and 128-bit quantum security in the standard model. With H = 10 it is possible to
generate 210 signatures from a single key pair but with other parameters it is possible to
reach 220 signatures. The signature size is 2500 bytes and public keys (excluding OID)
are 64 bytes. The size of the private key differs depending on the implementation since it
can be reduced heavily by sacrificing performance. This is due to the fact that the W-OTS
keys can either be stored as part of the private key or be generated using a pseudoran-
dom function from a secret 32 byte cryptographically secure seed. A private key using
this technique can be 132 bytes since it should also store a 32 byte seed for randomised
message hashing, the 64 byte public key and a 4 byte current leaf index.

For XMSSMT, the parameter set XMSSMT_SHA2-256_W16_H20_D2 can generate 220

signatures from a single private key but with other parameter sets where H = 60 it is
possible to generate 260 signatures [33]. The signature size is 4964 bytes and public keys

20 CHAPTER 3. POST-QUANTUM CRYPTOGRAPHY

are 64 bytes. Similarly to XMSS, a compact private key can be constructed by generating
W-OTS keys for all XMSS trees pseudorandomly, giving a private key of size 132 bytes
when using a 4-byte current leaf index.

An implementation of XMSS was available in the Botan C++ Cryptography Library
[36]. A reference implementation of both XMSS and XMSSMT could also be found at one
of the author’s website: https://huelsing.wordpress.com/code/. The reference
implementation was found to be several times faster due to various speedup techniques
being applied.

3.3.2 SPHINCS

SPHINCS [32] is a hash-based signature scheme based on the Merkle tree approach. Just
like XMSS, the security of SPHINCS relies solely on the properties of a cryptographic
hash function. The SPHINCS hash tree is, similar to XMSSMT, a hypertree consisting of
several layers of hash trees. The leaf nodes of top layers in the hypertree contain Win-
ternitz One-Time Signature (W-OTS+) keys that are used for signing the root nodes of
trees on a lower level. The Few-Time Signature (FTS) scheme HORS with Trees (HORST)
is used for signing messages and the HORST keys are contained in the leaf nodes of the
lowermost layer of trees.

SPHINCS is, compared to XMSS and many other hash-based signature schemes, a
completely stateless digital signature scheme. Other hash-based signature schemes based
on Merkle trees store a leaf index counter as part of the private key. This counter is up-
dated for every new signature generated, to prevent reuse of the same key pair. The
statelessness of SPHINCS is accomplished by instead picking a leaf index correspond-
ing to a key pair randomly, without any regard to if the key pair has been used before.
This randomised leaf index selection naturally opens up the risk of reusing the same key
pair several times. If a One-Time Signature scheme was used this would lead to a com-
plete compromise of the system. However, since SPHINCS uses a FTS scheme, this threat
is minimised.

A Few-Time Signature scheme such as HORST is similar to a OTS scheme but can
be used to sign a few messages without compromising the private key. However, with
each message signed the probability of a forgery being possible increases. The parame-
ters for SPHINCS-256 are chosen in such a way that the probability of a forgery should
always be sufficiently small to ensure 128-bit security against quantum attackers. An ex-
ample shows that even if 250 messages are signed, which would take more than 30 years
if a million messages are signed per second, the probability of a post-quantum attack
with cost smaller than 2128 should be below 2−48 [32]. However, security degrades as the
number of signatures increases which consequently means that the number of signatures
that can be generated is limited.

Public and private keys A SPHINCS key pair is generated by first sampling two secret
values (SK1, SK2) ∈ {0, 1}n × {0, 1}n [32]. SK1 is used for pseudorandom key genera-
tion and SK2 is used to generate an unpredictable index and to randomise the message
hash. Also, a small number of bitmasks Q are generated. The bitmasks are used for all
W-OTS+ and HORST instances as well as for the trees.

To generate the public key, the root node must be generated. To do this, the W-OTS+

key pairs for the topmost tree are generated. All the keys are generated pseudorandomly

CHAPTER 3. POST-QUANTUM CRYPTOGRAPHY 21

from SK1. The leafs consisting of W-OTS+ public keys are used to build the binary hash
tree and calculate the root node value PK1. The private key consists of (SK1, SK2, Q)

and the public key consists of (PK1, Q).

Signature generation Signatures on a message M ∈ {0, 1}∗ are generated by first gener-
ating a pseudorandom value R = (R1, R2) by feeding M and SK2 into a pseudorandom
function. A randomised message digest D is computed as the randomised hash of M us-
ing R1 as randomness. To sign the message digest D, a HORST key pair must be chosen.
The index used to choose a HORST key pair is computed using R2. The index chooses
both the tree and the leaf index inside the chosen tree.

A SPHINCS signature contains an index i, the randomness R1 and a HORST signa-
ture σ. Furthermore, one W-OTS+ signature and authentication path per layer of trees
is required to verify a signature. These values are calculated during the signing process
by generating one binary hash tree for each layer of the SPHINCS hypertree. Signing is
deterministic since all required randomness is generated using a pseudorandom function.

Signature verification To verify a SPHINCS signature, the verifier must verify the HORST
signature σ and one W-OTS+ signature and authentication path per layer of trees. By do-
ing this, the verifier can compute a value for the root node. The signature is valid if the
computed value is equal to the value PK1 of the public key.

Attacks, parameter sets and implementations The multi-target attack explained in Sec-
tion 3.3.1 can be applied not only to XMSS but to SPHINCS as well. An estimated reduc-
tion in bit security is not specified and it is not trivial to calculate it given that SPHINCS
is different to XMSS in many ways. Patching SPHINCS is however said to be possible by
applying the changes presented in [35]. These changes would decrease the signature size
of SPHINCS but most likely reduce the performance of the algorithm as well.

SPHINCS, and most other hash-based signature schemes, can be instantiated in a
number of different ways with trade-offs between security level, signature size, and sig-
nature generation times [32]. The proposed instantiation of SPHINCS called SPHINCS-
256 has 41000 byte signatures, 1056 byte public keys and 1088 byte private keys. SPHINCS-
256 was claimed to have 256-bit security against classical computers and 128-bit security
against quantum computers in the standard model. However, the multi-target attack pre-
sented in [35] lowers this security but the exact reduction in bit security is not clear since
SPHINCS is different to the original XMSS in many ways. For example SPHINCS uses a
FTS scheme and a 512-bit message digest. It is however clear that security degrades with
the number of messages signed.

The original implementation of SPHINCS was written in C and could be found in the
eBACS benchmark suite [37]. A Java version of SPHINCS had also been implemented in
the Bouncy Castle Java Cryptography API [38].

3.4 Lattice-based signature schemes

To understand lattice-based cryptography it is important to first understand the basics
of lattices. A lattice is a set of points in an n-dimensional space with a periodic struc-
ture [23]. The lattice is generated by n linearly independent vectors b1, ..., bn ∈ Rn. These
vectors are known as the basis of the lattice and it is straightforward to see that several

22 CHAPTER 3. POST-QUANTUM CRYPTOGRAPHY

different bases can be used to produce the same lattice. For basic lattice-based digital sig-
nature schemes, short and fairly orthogonal vectors are usually denoted as “good” bases
and act as private keys, while long and far from orthogonal vectors are denoted as “bad”
bases and act as public keys. Good bases can then find solutions to presumed hard prob-
lems while bad bases can only verify that the solution is correct.

Lattice-based cryptosystems are based on the presumed worst-case hardness of lat-
tice problems [23]. Some of these problems are the Shortest Vector Problem (SVP), Clos-
est Vector Problem (CVP) and the Shortest Independent Vectors Problem (SIVP). More
recently proposed mathematical problems used for constructing lattice-based cryptosys-
tems, used in for example the BLISS [39] and ring-TESLA [40] algorithms, are the Short
Integer Solution and Learning With Errors problems over rings, (R-SIS) and (Ring-LWE)
respectively.

Attempts to solve lattice problems using quantum algorithms have been made since
the discovery of Shor’s algorithm but so far there have been no major breakthroughs and
lattice-based cryptosystems are still considered safe from quantum attacks [23, 3]. This
means that there are currently no known quantum algorithms for solving lattice problem
that perform significantly better than classical algorithms. It should however be noted
that lattice-based cryptosystems have not been studied as much as for example RSA, and
their security is uncertain even on classical computers.

In the remainder of this section the BLISS signature schemes will be explained in
more detail. BLISS was chosen for its high efficiency and small keys. BLISS has also been
called a bridge between theoretical and practical lattice-based schemes and for being a
good candidate for integration into constrained systems and devices [41].

3.4.1 BLISS

The BLISS signature scheme is a recently proposed lattice-based scheme and its security
relies on the presumed hardness of the generalised Short Integer Solution (SIS) problem.
The BLISS scheme builds upon the failures of several previous lattice-based signature
schemes such as NTRUSign and GGU that were broken by Nguyen and Regev [42] due
to information about the private key leaking for each signature made [39]. BLISS uses re-
jection sampling, a method to sample from an arbitrary target probability distribution,
with Bimodal Gaussian distributions to try to better hide the structure of the private
key. Compared to previous lattice-based algorithms using rejection sampling, the method
used by BLISS has a smaller number of average rejections in the rejection sampling step,
which accelerates the total running time of the signing algorithm.

Public and private keys A BLISS private key is a matrix S in a ring R and the public
key is a matrix A such that:

AS = A(−S) = qIn (mod 2q),

where In is the identity matrix of dimension n, the value of q is prime and q = 1 (mod 2n)

[39, 43].

Signature generation A signature for message digest µ is generated by sampling a vec-
tor y from a discrete Gaussian distribution and computing the hashed value:

c← H(Ay mod 2q, µ)

CHAPTER 3. POST-QUANTUM CRYPTOGRAPHY 23

A bit b ∈ {0, 1} is then sampled and the potential output:

z ← y + (−1)bSc

is computed. The output z is distributed according to a bimodal discrete Gaussian dis-
tribution. Rejection sampling is then performed and if successful, a signature (z, c) is re-
turned as output. If the rejection sampling step is unsuccessful, the algorithm is restarted
with a new value y. The expected number of iterations is generally small, between 1.6
and 7.4 for the different parameter sets proposed in the original paper.

Signature verification To verify a signature, the verifier must ensure that z is no larger
than should be expected from a discrete Gaussian variable with width parameter σ [43].
The max-norm of z must also be verified to be small. The signature is then verified by
checking if:

c = H(Az + qc mod 2q, µ)

The verification is valid because:

Az + qc = A(y + (−1)bSc) + qc = Ay + ((−1)bAS)c+ qc = Ay + (qIn)c+ qc = Ay mod 2q

Attacks, parameter sets and implementations There are several different parameter sets
proposed for BLISS offering different target security levels as well as trade-offs between
speed and size [39]. The four parameter sets proposed in the original paper are BLISS-I,
II, III and IV with targeted 128, 128, 160 and 192 bits of classical security in the random
oracle model respectively. A more efficient implementation, compatible with BLISS, was
later proposed called BLISS-B [44]. An instantiation of the BLISS-B-IV parameter set pro-
duces 6.5 kb signatures, 7 kb public keys and 3 kb private keys.

The quantum security of BLISS and BLISS-B was not discussed in the original papers.
A recently published paper by Saarinen [45] has shown that the quantum security level
is roughly halved by using Grover’s algorithm to find a hash collision. The author pro-
posed a new, less efficient but more secure, version of BLISS called BLZZRD with a sup-
posed 128-bit quantum security.

Furthermore, Staffas [43] proposed another version called REBLISS to try to fix the
problems pointed out in [45] as well as other weaknesses in the original BLISS scheme.
The result is a presumably more secure scheme with comparable performance in regards
to speeds and sizes. However, the author does not recommend using REBLISS or any
other BLISS variant until more research has been done in the field since the security is
still uncertain.

Academic implementations of BLISS and BLISS-B are published and made available
under an open source license [46]. The authors are however clear that the academic im-
plementation should not be used. BLISS and BLISS-B have later also been implemented
in the libstrongswan cryptographic library included in strongSwan [47], an open source
IPsec-based VPN Solution. By using libstrongswan it is possible to generate public key
pairs, create and verify signatures and generate X.509 certificates. An educational imple-
mentation of BLZZRD is available in a public Github repository [48] while there seems to
be no publicly available implementation of REBLISS.

24 CHAPTER 3. POST-QUANTUM CRYPTOGRAPHY

3.5 Multivariate-based signature schemes

Multivariate-based cryptosystems are based on multivariate polynomials over a finite
field [23]. In multivariate-based cryptosystems, the main security assumption is backed
by the NP-hardness of the problem to solve non-linear quadratic equations over a finite
field. The problem can be described as:

MQ Problem: “Solve the system p1(x) = p2(x) = ... = pm(x) = 0, where each
pi is a quadratic in x = (x1, ..., xn). All coefficients and variables are in K = Fq,
the field with q elements.” [23]

The MQ Problem is NP-hard, meaning that not even the signer would be able to
solve it efficiently if the set of equations were truly random. The way multivariate-based
signature schemes work is that the public key is created with a trapdoor function which
acts as the private key. This consequently means that effective attacks against the scheme
might exist if there is an attack against the trapdoor function.

Multivariate signature schemes usually have a very large public key but in turn, pro-
duce very small signatures [23]. The basic idea of multivariate-based signature schemes
is to choose a multivariate system F of quadratic polynomials which can be easily in-
verted [49]. This F is commonly referred to as the central map. Two affine linear maps
S and T are then chosen to hide the structure of the central map. The public key is the
composed map P = S ◦ F ◦ T , which is difficult to invert. The private key is the three
maps S, F and T which makes it possible to invert P .

There are a several multivariate-based signature schemes available today. The remain-
der of this section will explain the Rainbow and the HFEv- scheme Gui in more detail.
Rainbow was chosen mainly for its availability in a cryptographic library while Gui was
chosen for its supposedly higher security and efficiency. Other HFEv- schemes exist as
well but the recently proposed Gui is able to offer performance on par with RSA and
ECDSA [50].

3.5.1 Rainbow

The Rainbow signature scheme, first proposed in [51], is a multivariate signature scheme
based on the principle of Oil and Vinegar variables. More specifically, Rainbow uses a
multi-layer Oil-Vinegar system. The principle of Oil and Vinegar variables is one way to
create easily invertible multivariate quadratic systems [49].

To understand Oil and Vinegar schemes, let o and v be two integers such that n =

o+ v [49]. For the n variables x1, ..., xn in an Unbalanced Oil and Vinegar (UOV) scheme,
where v > o, the Vinegar variables are x1, ..., xv and the Oil variables are xv+1, ..., xn.

The quadratic polynomials of an Oil and Vinegar scheme are generated in such a way
that the central map F can be easily inverted for the signer by first choosing the values
of the v Vinegar variables at random. This produces a system of o linear equations in
the o variables xv+1, ..., xn, which can be solved by Gaussian Elimination. If the system
has no solution, new values for the Vinegar variables are chosen and the process can be
repeated until a solution is found.

Public and private keys A Rainbow private key consists of the central map F , consist-
ing of the multi-layer Oil and Vinegar system, and the two randomly chosen, invert-

CHAPTER 3. POST-QUANTUM CRYPTOGRAPHY 25

ible affine linear maps L1 and L2 [51]. The public key is the field structure of K and the
n− v1 polynomial components of the composed map F̄ = L1 ◦ F ◦ L2.

Signature generation To sign a message of arbitrary a length, a message digest Y ′ can
be calculated using a hash function. In order to sign the message digest:

Y ′ = (y′1, ..., y
′
n−v1),

a solution to the following equation must be found:

L1 ◦ F ◦ L2(x1, ..., xn) = F̄ (x1, ..., xn) = Y ′

In order to solve this equation, the maps L1, L2 and F must be inverted. The Rainbow
signature scheme uses multiple layers of Oil and Vinegar constructions [51]. To invert
the map F we start by choosing values for x1, ..., xv1 randomly and plugging them into
a first layer of equations. This produces a system of o1 linear equations in the o1 un-
knowns xv1+1, ..., xv2 , which can be solved by Gaussian Elimination. The values obtained
are then inserted into the next layer of equations and the process is repeated until a so-
lution is found for all variables x1, ..., xv1 , ..., xv2 , ..., xn. If one of the linear systems does
not have a solution, the whole process is repeated for new values of x1, ..., xv1 .

By applying the inverse maps of L1, F and L2 to Y ′ we obtain the signature:

X ′ = (x′1, ..., x
′
n)

Signature verification Verifying a signature is a simpler operation. The verifier only
needs to calculate a message hash Y ′ and verify that F̄ (X ′) = Y ′.

Attacks, parameter sets and implementations Several attacks against Rainbow and other
multivariate-based signature schemes have been found since Rainbow was first proposed.
In 2010, a large number of parameter sets thought to be secure against the known attacks
were provided in [49]. The security levels of the proposed parameter sets were calculated
using the Lenstra-Verheul equation format that defines a year at which the scheme pro-
vides adequate security. The security of the different parameter sets ranges from 2010 to
2050. A translation to bit security and equivalent RSA security is given in [52], where a
parameter set aimed at offering adequate security in the year 2040 is said to be equiva-
lent to a 101-bit symmetric key or a 3214-bit RSA key. That parameter set, over the field
GF(256), has 122.6 kB public keys, 87.7 kB private keys and 592-bit signatures.

Rainbow over the field GF(256) is implemented in the Bouncy Castle Java API [38]
with adjustable parameters.

3.5.2 HFEv- scheme Gui

The HFEv- multivariate-based signature scheme was introduced in 1995 and has remained
unbroken since then [53]. HFEv- schemes exploit the fact that there are general meth-
ods to solve univariate polynomial equations over finite fields Fq efficiently. In order to
exploit this property, HFEv- schemes makes the multivariate polynomials in the central
map secretly related to a univariate polynomial. This makes it possible to easily invert
the central map, as is required in multivariate-based signature schemes.

26 CHAPTER 3. POST-QUANTUM CRYPTOGRAPHY

Public and private keys A private key in the HFEv- signature scheme consists of the
central map F , which is related to a univariate polynomial, and two secret invertible
affine maps S and T [50]. The public key is the composed map P = S ◦ F ◦ T .

Signature generation A signature z on message digest h is generated by finding a solu-
tion to the equation:

P (z) = h

This can be done since the inverse of S, F and T can all be computed by the signer. The
affine maps are easily invertible and the relationship to a secret univariate polynomial of
HFEv- polynomials allows the signer to invert the central map F .

Signature verification A signature z is verified by hashing the message to obtain h′ and
verifying that P (z) = h′ = h [50].

Attacks, parameter sets and implementations Attacks against HFEv- schemes exist but
so far none have been able to completely break the security of the scheme. One of the
more recent variants of HFEv- schemes is called Gui [50] and offers better performance
and possibly better security compared to previous HFEv- schemes such as QUARTZ. This
was achieved by analysing design criteria for HFEv- schemes and finding that its possible
to use HFE polynomials of very low degree while supposedly maintaining a high level
of security.

There are three different parameter sets proposed for the Gui scheme [50]. The most
secure parameter set, Gui-127, has an estimated 120-bit classical security and the quan-
tum security is said to be 120 bits for a long time despite Grover’s algorithm. This is
because an attack using Grover’s algorithm would require a quantum computer with a
million qubits in comparison to the one required to break RSA and ECC, which suppos-
edly only needs a few thousand qubits. The authors also state that although a quantum
computer with a million qubits seems improbable, the scheme can be further protected
by doubling the number of polynomials and variables. This would however increase the
public key size by a factor 8 and also decrease performance. If a quantum computer with
a million qubits exists, the quantum security is reduced to 60 bits.

For the Gui-127 parameter set, public keys are 143 kB, private keys are 5.3 kB and
signatures are 163 bits. No public implementations of Gui seemed to be available.

3.6 Code-based cryptography

Code-based cryptography relies on error-correcting codes and the NP-hardness of the
general decoding problem [23]. Code-based cryptography has shown to be a good candi-
date for post-quantum encryption, with the most promising candidate being the McEliece
cryptosystem with hidden Goppa codes [54] that has withstood serious attacks for sev-
eral decades from classical computers and has no efficient quantum attack [23]. One ap-
parent downside is the size of the public key that becomes roughly 1 MB when aiming
for 128-bit quantum security [55].

The use of code-based cryptography for digital signature schemes has had less suc-
cess. Schemes proposed have either been broken, as in [56, 57], or offer poor performance
in comparison to other post-quantum schemes with their large public keys and highly

CHAPTER 3. POST-QUANTUM CRYPTOGRAPHY 27

inefficient signature generation [3]. The advantage of code-based signature schemes is,
similarly to multivariate-based signature schemes, that they have small signatures and
efficient verification. For this reason, code-based signature schemes continue being an in-
teresting research topic.

3.7 Isogeny-based cryptography

Isogeny-based cryptography is based on supersingular elliptic curve isogenies. This should
not be confused with the elliptic curve cryptography used in ECDSA, which instead re-
lies on the elliptic curve discrete logarithm problem and thus is broken by Shor’s algo-
rithm.

Supersingular elliptic curve isogeny-based cryptography is a relatively new field of
research and therefore there has not been any digital signature schemes available un-
til recently. Two independent papers [58, 59] presenting isogeny-based digital signature
schemes have recently been published but both schemes suffer from relatively poor per-
formance compared to other post-quantum schemes. For reference, the scheme presented
in [59] has 336 byte public keys, 48 byte private keys and produces 122,880 byte signa-
tures.

Some might further argue that there is reason to be sceptical towards the security of
isogeny-based schemes due to the fact that they are relatively new and therefore have
not been under as much scrutiny as other cryptosystems. NIST has stated that there has
not been enough analysis to have much confidence in their security [6]. Isogeny-based
cryptography does however still continue being an interesting research topic for the fu-
ture.

Chapter 4

Methodology

The methodology used to produce the results of this thesis was an extensive literature
study combined with gathering empirical evidence through experimentation. The litera-
ture study results and the empirical evidence was used to determine the algorithms prac-
tical usability in PKI today by inductive reasoning. By studying the signature sizes, key
sizes, security and performance of the algorithms when generating signatures or X.509
certificates, a general conclusion on their suitability could be made. The following sec-
tions describe the literature study and the algorithm evaluation in more detail.

4.1 Literature study

The literature study was carried out by first finding relevant sources to gain sufficient
background knowledge about PKI, quantum computing and post-quantum cryptography
in general. This was followed by finding some general requirements for digital signature
algorithms in PKI in order to rank different properties of digital signature algorithms.
Both current requirements and possible future requirements were considered.

For the background knowledge on PKI and post-quantum cryptography, the literature
consisted of mostly books published in the last ten years. This was to ensure that enough
in-depth information was available, as compared to published articles where the given
background is generally brief. The reason behind focusing on recently published books
was to ensure that the information was not outdated due to fast development in the field
of quantum computing and post-quantum cryptography.

Finally, post-quantum algorithms for digital signatures were identified and examined
while staying critical to their proposed security levels. The main source of information
was the original papers published on the algorithms as well as other published articles
touching the same algorithm. Other articles could for example be practical implementa-
tion attempts, performance measurements, general discussions and cryptanalyses.

In cryptography it is important to look at the latest available information in order to
not miss an important breakthrough such as a new attack against a cryptosystem. There-
fore, most articles studied were from the last few years. However, it can also be impor-
tant to not trust a newly proposed algorithms security measurements before it has had
thorough analysis and peer-review. This meant that algorithms proposed in the last year
were treated with more scepticism compared to older algorithms.

28

CHAPTER 4. METHODOLOGY 29

4.1.1 Literature sources and scepticism

Books, papers, articles and other sources of information were mainly gathered from three
sources: The Primo search tool at KTH, that is connected to a large number of literature
databases, Springer and Google Scholar. The websites of different cryptography confer-
ences, such as the PQCrypto conference specialising in post-quantum cryptography, were
also used to find the titles of newly published papers. From these sources it was deemed
possible to gain access to a vast number of high-quality, peer-reviewed literature.

However, many articles regarding post-quantum cryptography were published quite
recently. This could mean that, even though the articles had been peer-reviewed, they
had not been subjected to as much scrutiny from the scientific community as older arti-
cles might have been.

Furthermore, since post-quantum cryptography is a relatively narrow field of research,
many articles cited are published by the same universities, by the same project groups or
by the same authors. This should not pose a problem as long as the articles hold a high
scientific standard but it is still possible that some bias might have been present in those
articles.

4.2 Algorithm evaluation

The evaluation of algorithms suitability for use in PKI was carried out in two steps. The
first step was to study the results of the literature study to see which algorithms offered
sufficient theoretical performance. This involved identifying key requirements for PKI
and examining the algorithms in regards to those requirements. The key requirements for
PKI were divided into performance requirements (running times) and size requirements
(size of signatures and keys). The post-quantum algorithms were evaluated against the
size requirements following the literature study. Important parameters that were consid-
ered for each algorithm were:

• Classical and quantum security level

• Signature size

• Public key size

• Private key size

• Code availability

Other interesting aspects considered were:

• Stateful/Stateless

• Limits on maximum number of signatures

• Similarity to currently used signature schemes

A signature algorithm with a proposed security level of at least 128 bits against both
quantum attacks and classical attacks was seen as highly secure. Algorithms with less
security were however also considered and compared since there can still be applica-
tions for less secure signature algorithms (short-lived certificates, constrained devices et

30 CHAPTER 4. METHODOLOGY

cetera). Furthermore, the speed at which the performance of quantum computers will
increase is uncertain, making a too strict security requirement counter-productive for a
surveying study such as this thesis.

The second step was to gather empirical evidence by benchmarking some of the sig-
nature algorithms chosen from the first step. The goal of the thesis was to find algo-
rithms that could be used in PKIs today. Therefore, only algorithms available in crypto-
graphic libraries were benchmarked. The algorithms were evaluated to acquire empirical
evidence of the running times in a practical setting. The algorithms were evaluated with
regards to the following three properties in the benchmark:

• Key generation time

• Signature generation time

• Signature verification time

The algorithms were benchmarked by generating key pairs, generating signature for
short messages and verifying the signatures. This was done in different libraries and pro-
gramming languages, depending on the code availability. The average running time, me-
dian running time and sample standard deviation were measured for all operations. Self-
signed X.509 certificates were also generated when the library allowed it, but since this
was not possible for all algorithms this operation was not benchmarked in more depth
than to confirm that X.509 certificate operations was about as fast as operations on arbi-
trary data.

To still have a fair time measurements between the different libraries and program-
ming languages, the performance of an algorithm was evaluated against two common
classical algorithms, 3072-bit RSA and ECDSA (P-256), which both offer 128-bit classical
security. This evaluation could then produce a relative performance measurement to the
classical algorithms, somewhat independent of programming language or library used.
It is clear that this relative performance depends on how efficient the implementation
of RSA and ECDSA was and how large the library overhead was. Therefore the relative
performance evaluation could only give a rough estimate of how the algorithms might
perform if they were implemented in the same library. The benchmark should therefore
foremost be seen as a comparison between different practical implementations of algo-
rithms and not as a measurement of the optimal performance of the algorithms.

4.3 Considered methodologies

Another methodology considered was to perform a literature study similar to the one
conducted in this study but then choose only one post-quantum digital signature al-
gorithm that was considered most suitable for digital signing in PKI. The chosen post-
quantum algorithm would then be implemented in one or several cryptographic libraries
in order to allow signing and verification of X.509 certificates. The implementations in
different libraries could then be benchmarked to see which library offered the best per-
formance and make a recommendation to the PKI community based on the benchmark
results, while at the same time helping the community by making a post-quantum algo-
rithm available in several different libraries.

CHAPTER 4. METHODOLOGY 31

This approach was however not chosen in favour of the methodology used in this
thesis for several reasons. The first reason was that several promising post-quantum al-
gorithms already had available implementations in cryptographic libraries. Comparing
the implementations of those available implementations was deemed to have a higher
value compared to implementing a single algorithm. The second reason was that the
PKI community would most likely be more willing to integrate post-quantum algorithms
available in moderately well-known cryptographic libraries that possibly was already be-
ing used in some PKI products.

Chapter 5

Literature study results

This chapter will describe the results obtained from the literature study. More specifically,
signature algorithm requirements gathered from the literature study on PKI are first pre-
sented. Then, from the large set of post-quantum digital signature algorithms available
today, a subset of algorithms are compared in order to find suitable candidates for use in
PKI.

5.1 Signature algorithm requirements for use in PKI

For a PKI to be useful in practice it needs to be both secure and efficient. Since generat-
ing and verifying signatures is a vital part of the PKI, the signature algorithm must meet
several requirements. The signature scheme must be secure for at least as long as the cer-
tificates they belong to are valid. For short-lived certificates the security could potentially
be slightly lower compared to certificates with longer lifetimes, such as root CA certifi-
cates. Further requirements on the signature algorithm used in PKIs were divided into
performance and storage requirements.

5.1.1 Performance requirements

The performance requirements of a signature algorithm can be broken down into key
generation, signature generation and signature verification times.

Key generation of signature keys will either be performed by the end-entity or in rare
cases by a CA. If the operation is performed by the end-entity, either in software or by
hardware, the tolerable key generation time might be slightly higher. This is because the
workload will be divided to all end-entities in contrast to the case of key generation on
CAs where the CA need to generate keys for all end-entities. Furthermore, signature key
generation is usually performed infrequently so the requirement of having short key gen-
eration times is not crucial as long as the key generation time is fast enough to not im-
pact the end-entity’s workflow severely.

Key generation on constrained hardware devices such as smart-cards might be prob-
lematic if key generation requires heavy computations. Generating keys on a more pow-
erful device such as a server, PC or HSM (Hardware Security Module) and then trans-
ferring the keys to the constrained device is one way to solve the problem. This does
however open up for security threats linked to the key transfer and the security of the

32

CHAPTER 5. LITERATURE STUDY RESULTS 33

machine generating the keys. Efficient key generation can therefore be seen as desired,
but not necessarily crucial.

CAs need to sign certificates and CAs, RAs and end-entities might all need to sign
and verify messages sent between them. It is therefore important that the signature gen-
eration and verification times are as small as possible. For example, CRLs and OCSP re-
sponses need to be signed by the CA and verified by whoever is trying to verify a certifi-
cate. Verification is performed more often than signing since certificates are only signed
once but verified multiple times. Furthermore, verification is usually performed by end-
entities who might have limited resources, while signing is usually done on the server
side. Therefore, fast verification is deemed to be seen slightly more important than fast
signing.

TLS, certificate-based logins and e-mailing using S/MIME and are just some appli-
cations that require signature generation and verification to be fast. The exact speed de-
pends on the application and the hardware used to perform signature operations, but
generally speaking the delay introduced by signature operations should not be noticeable
to the end-user. Time-Stamping Authorities and other signing services will also need to
provide signatures in a timely manner. Such services can also have regulations or cus-
tomer demands when it comes to maximum signature times, usually less than one sec-
ond.

The most restrictive performance requirement on a post-quantum signature algorithm
might be to say that signature generation and verification should be at least as fast as
classical signature algorithms. This might however be a bit too restrictive today since
post-quantum cryptography is still a relatively new research area. A better requirement
might be to say that the performance should be comparable to classical signature algo-
rithms.

The performance requirements on a signature algorithm for key generation, signature
generation and signature verification speeds will depend on the context in which it will
be used. For end-entities, fast verification might be more important. For servers in the
PKI, fast signature generation might be more important. In the general case for PKI the
following ranking, from most important to least important, was deemed suitable due to
the previously mentioned points in this section:

I. Fast verification of signatures

II. Fast signature generation

III. Fast key generation

This ranking coincides with the properties of RSA signing, where verification is faster
than signing. This means that any post-quantum algorithm following the ranking will
have similar properties to RSA. This was deemed to be a positive feature since RSA sign-
ing is commonly used for signing in PKIs today.

5.1.2 Size requirements

The storage needed by a PKI and its users will depend on the size of signatures, pub-
lic keys and private keys. For X.509 certificates it is straightforward to see that the fields
that change in size when switching algorithms are the signatureValue field and the sub-
jectPublicKeyInfo field. The signatureValue field will change in size depending on the

34 CHAPTER 5. LITERATURE STUDY RESULTS

issuer signature algorithm and the subjectPublicKeyInfo field will change in size depend-
ing on the subject public key.

The size of a typical self-signed X.509 certificate excluding signature and subject pub-
lic key was measured in order to fully understand how much impact a large signature
size or a large subject public key size has on the total certificate size. The size was esti-
mated to be roughly 300-400 bytes for a certificate encoded with DER. This size of course
depends on the number of fields present, length of field inputs and the size of exten-
sions, among other things.

Many protocols require signatures and certificates to be sent with requests or stored
together with a file. For example, TLS requires certificates to be sent during the TLS hand-
shake. If the signature of the certificate is much larger than the subject public key, a no-
ticeable communication overhead will occur. To minimise this overhead, the issuing CA
should use a signature algorithm that generates as small signatures as possible. If the CA
is a root CA, a larger public key size can be tolerated due to the fact that root certificates
are often distributed only once and together with an operating system, browser or other
applications. However, if the CA is not a root certificate or some other certificate already
known by the verifier, a certificate chain that includes the issuing CA’s certificate must be
transferred. This means that signature public key sizes also affect the size of transferred
data.

For other protocols such as Long-Term Validation, the certificate might need to be
stored together with a document. In this case, the total size of the signer’s certificate will
have an impact on the storage required to archive the signed document.

When downloading signed software or signed software updates, the size of signa-
tures will determine the total download size. One interesting example is the software
distribution in the Debian operating system where the median package size was 0.08 MB
in 2014 [32]. A signature algorithm that generate large signatures will have a great im-
pact if updates are small and frequently installed. In cases like this, having a signature
algorithm with small signatures will be much preferred since the certificate used to ver-
ify the signatures is rarely updated.

The private key size is important when it must be stored on constrained devices such
as smart-cards. In the general case however, having a small private key size is of low
priority since most entities have enough storage available to store it.

The size requirements on a post-quantum signature algorithm depends on the appli-
cation but for many applications, both signature and public key sizes are important. In
PKIs, the following ranking, from most important to least important, was deemed suit-
able due to the previously mentioned points in this section.

I. Small signature size

II. Small public key size

III. Small private key size

5.2 Algorithm properties

The properties of the different post-quantum signature algorithms researched during the
literature study are presented in Table 5.1. The algorithms are compared with regards to

CHAPTER 5. LITERATURE STUDY RESULTS 35

Signature algorithm Security level
classic/quantum

Signature
size (bytes)

Public key
size (bytes)

Private key
size (bytes)

Implementation

XMSS
(SHA2-256_W16_H10)

256/128 2500 64 132 Botan

XMSSMT

(SHA2-256_W16_H20_D2)
256/128 4964 64 132 https://huelsing.

wordpress.com/code/
SPHINCS-256 <256/<128 41,000 1056 1088 Bouncy Castle

BLISS-B-IV 159/96 832 896 384 strongSwan
REBLISS-I 128/128 809 870 166 -

Rainbow(256,31,21,22) 101/101 74 122,600 87,700 Bouncy Castle
Gui-127 120/120(60) 21 142,576 5350 -

Isogeny-based 192/128 122,880 336 48 https://github.
com/yhyoo93/
isogenysignature

RSA-3072 128/Broken 384 384 1728 Widespread
ECDSA (P-256) 128/Broken 64 64 96 Widespread

Table 5.1: Comparison of estimated security levels, signature and key sizes (in bytes), and available
implementation of post-quantum and classical signature algorithms

security level, signature size, public key size, private key size and if they have an avail-
able implementation. All sizes in the table listed in bytes and might be slightly off due
to rounding errors and misunderstandings between kilobits and kibibits. If an algorithm
had several implementations available, the most high-grade implementation was listed.
For educational and academic implementations, a link to the website where the code was
available is listed.

The reference algorithms RSA-3072 and ECDSA over P-256, with 128-bit classical se-
curity but no quantum security, are also added to the table to show how the signature
and key sizes of the post-quantum algorithms compare to a classical equivalent.

5.2.1 Security levels

The estimated security levels in Table 5.1 are expressed in bit security, meaning that for
an attacker to attack a scheme with bit security b should require roughly 2b operations to
break the scheme. Both classical and quantum security levels are presented on the form:

“classical bit security”/“quantum bit security”

The security of SPHINCS-256 is reduced by the multi-target attack explained in [35]
but the estimated reduction of bit security is not specified and is not entirely clear. There-
fore, the bit security is specified as strictly less than the original security. It should be
noted however that the attack does not completely break the signature scheme, in the
same way that XMSS was not completely broken by the same attack. Furthermore, chang-
ing some parts of the SPHINCS algorithm would protect against the attack and at the
same time decrease the signature size.

The security levels of BLISS-B-IV is reduced from 192/192 to 159/96 as shown in [43,
45]. Modifying the algorithm to obtain the REBLISS-I scheme would presumably increase
quantum security and give slightly smaller keys and signatures.

36 CHAPTER 5. LITERATURE STUDY RESULTS

No quantum security level was estimated for Rainbow(256,31,21,22) in [49, 52], but
multivariate-based signature schemes are thought to be secure against quantum attack-
ers since so far, no quantum algorithm exists to solve multivariate problems efficiently.
Therefore, the quantum security level was set to the same value as the classical security
level.

The quantum security of Gui depends on how a large-scale quantum computer is de-
fined. In [50], the authors argue that the quantum security is 120 bits, the same as the
classical security, as long as a quantum computer with a million qubits seems improba-
ble. Otherwise, quantum bit security is reduced to 60 bits unless less efficient parameters
are used.

5.2.2 Signature and key sizes

From the signature and key sizes presented in Table 5.1 it is clear that none of the post-
quantum algorithms have both smaller signatures and smaller key sizes compared to
RSA-3072 and especially not to ECDSA (P-256). There are however algorithms that of-
fer either much smaller key sizes or smaller signatures. For example, the most storage
efficient implementation of XMSS have keys that are smaller than RSA-3072 and on par
with ECDSA (P-256). More performance efficient implementations of XMSS do however
have larger private keys.

The multivariate-based signature schemes Rainbow(256,31,21,22) and HFEv- scheme
Gui-127 offer signatures significantly smaller than RSA-3072. Gui-127 signatures are even
smaller than ECDSA-256, one of the most storage efficient signature algorithms used to-
day. This makes Rainbow and Gui interesting signature algorithms when key sizes and
security can be sacrificed to achieve small signature sizes. Compared to Rainbow, Gui of-
fers both smaller signatures and smaller keys. Gui-127 private key sizes are significantly
smaller than Rainbow, almost on par with RSA-3072 key sizes.

The lattice-based scheme BLISS-B-IV is the most balanced scheme with regards to sig-
nature and key sizes, with the only apparent downside being the questionable security.

5.2.3 Available implementations

From Table 5.1 it clear that the only algorithms with implementations in cryptographic
libraries are XMSS, SPHINCS-256, BLISS and Rainbow.

XMSS has been available in the C++ cryptographic library Botan from version 1.11.34
where it is possible to both generate key pairs and sign/verify arbitrary messages. It is
however not possible to generate X.509 certificates using XMSS.

SPHINCS-256 and Rainbow has both been available in the Java cryptographic library
Bouncy Castle from version 1.55 and 1.48 respectively, where it is possible generate key
pairs and sign/verify arbitrary messages. It is also possible to generate X.509 certifi-
cates for SPHINCS-256 and with minimal source code changes it is possible for Rainbow.
SPHINCS-256 can be instantiated to use either SHA2 or SHA3. A Rainbow key pair can
be instantiated with user-specified parameters over the field GF(256).

BLISS-B-I, III and IV has been available in the C cryptographic library libstrongswan
included in strongSwan from version 5.3.0. It is possible to generate BLISS-B keys and
generate/verify X.509 certificates using the command line pki tool. It is however not pos-
sible to sign or verify arbitrary messages using the pki tool. To do this, the libstrongswan
library must be used directly.

CHAPTER 5. LITERATURE STUDY RESULTS 37

The other algorithms presented in Table 5.1 either have no publicly available imple-
mentation or a basic educational implementation to display the performance and correct-
ness of the algorithm.

5.2.4 Limitations of hash-based signatures

The hash-based signature schemes have two properties that are not relevant for other sig-
nature schemes. The first is that the hash-based signatures schemes have a limited num-
ber of signatures that can be generated. The second is that XMSS and XMSSMT are state-
ful schemes, meaning that the private key is updated after every generated signature.

For XMSS and XMSSMT, the maximum number of signatures that can be generated
are determined during key generation. Using the parameter sets presented in [33], it is
possible to generate between 210 and 220 signatures using XMSS and between 220 and
260 for XMSSMT. Choosing a higher number affects running times and signature sizes
negatively. For SPHINCS-256 the signature limitation is due to security being degraded
for each generated signature. Using the same key pair for much more than 250 signatures
is not recommended since security is then severely degraded.

XMSS and XMSSMT are both stateful schemes, making them unsuitable for systems
that need to be backed up or where the signing should be distributed. SPHINCS is state-
less but since security degrades with the number of signatures generated, distributed
signing could still be problematic.

Chapter 6

Performance evaluation

In this chapter a performance evaluation is presented to show how the post-quantum al-
gorithms performed in practice. The performance results of the post-quantum algorithms
are compared against each other and against the two classical algorithms RSA-3072 and
ECDSA (P-256).

The algorithms chosen for further evaluation following the results in Table 5.1 were
XMSS, SPHINCS, BLISS-B and Rainbow. The reason for choosing these algorithms was
that they had high-grade open source implementations in cryptographic libraries and rel-
atively high security levels. The XMSS implementation offers the highest security, 256-bit
classical and 128-bit quantum security. The SPHINCS, BLISS and Rainbow implementa-
tions offer slightly lower security. The implementation of Rainbow in Bouncy Castle does
however allow for free choices of parameters so the security can be increased at the cost
of decreased performance.

6.1 Benchmark descriptions

The benchmark for XMSS was written in C++ and utilised the Botan Cryptography API.
The Botan API only allowed signing and verification of arbitrary messages when using
XMSS. Time was measured using the std::chrono::steady_clock function included in the
standard library.

The benchmark for SPHINCS-256 and Rainbow(256,31,21,22) was written in Java 8
utilising the Bouncy Castle Java Cryptography API via the JCA/JCE interface. Bouncy
Castle allowed both signing and verification of arbitrary messages and certificate genera-
tion when using SPHINCS and Rainbow. Time was measured using the System.nanoTime()
method, which offered nanosecond precision.

The benchmark for BLISS-B was written in C and utilised the libstrongswan cryp-
tography library included in the strongSwan VPN Suite. The libstrongswan library al-
lowed signing and verification of arbitrary messages while X.509 certificate were most
easily generated and verified using the strongSwan pki tool, a command line interface tool.
Time was measured using the clock_gettime function in the time.h library, which offered
nanosecond precision.

All benchmarks were performed on a laptop with an Intel Core i7-3610QM CPU @ 2.30
GHz with Turbo Boost deactivated. The operating system used was Linux Mint 18.1 64-
bit with Linux kernel 4.4.0-67-generic. Benchmarks were run with a minimal number
of other processes running in the background to reduce system overhead. The average

38

CHAPTER 6. PERFORMANCE EVALUATION 39

and median running times were calculated from a variable number of iterations depend-
ing on the algorithm tested. The general rule was that the benchmark should run for at
least 250 iterations (for operations taking several seconds each) or at least tens of sec-
onds (for operations taking time in the order of milliseconds or nanoseconds). Linux’s
non-blocking source of randomness /dev/urandom was used in all benchmarks and cryp-
tography APIs, in favour of blocking calls to /dev/random, which was the default for some
libraries.

All post-quantum algorithms were measured against RSA-3072 and ECDSA (P-256)
implemented in the same library as the post-quantum algorithm. Due to the fact that
Botan did not allow X.509 certificate operations for XMSS, all benchmarks measured
signing and verification of arbitrary messages. The same wrapper classes or functions
were used and the data signed was small and identical. In the strongSwan benchmark,
openssl was utilised for RSA and ECDSA operations while the BLISS-B implementation
was a native libstrongswan plugin. The average and median running times for key gen-
eration, signatures generation and signature verification were measured in all bench-
marks. Additionally, the sample standard deviation was computed to show how con-
sistent the running times of different operations were.

The compilers used were g++/gcc version 5.4.0 and OpenJDK version 1.8.0_121.

6.2 Benchmark results

In Table 6.1, Table 6.2 and Table 6.3, the benchmark results for the average running times
are presented. The full benchmark data, including median time and sample standard de-
viations, can be found in Appendix A.

One thing to note about the results in Table 6.1 is that the XMSS algorithm imple-
mented in Botan is optimized for storage by generating private keys from a seed to a
pseudorandom function. As a consequence, the private key must be expanded whenever
a message is signed which explains why signature generation is as costly as key genera-
tion.

The sample standard deviations were relatively small for all operations except for
RSA key generation, Rainbow signing and BLISS signing. This is natural due to the me-
chanics of the respective algorithms. RSA key generation involves testing numbers to see
if they are prime (with a high probability) until two prime numbers are found. This can
take a variable amount of time which is shown by the large standard deviation. Sign-
ing in both Rainbow and BLISS has a chance to restart if an unsuitable random value is
chosen at the start of the signing algorithm, which explains why the standard deviations
were relatively high.

The Bouncy Castle benchmark had slightly higher standard deviations overall com-
pared to the two other benchmarks. The exact reason for this was not investigated in too
much detail, due to the small impact it seemed to have on the actual benchmark results,
but it was possibly due to the unpredictiveness of the Java virtual machine. For exam-
ple, the Java Just-In-Time Compiler and garbage collection occurring in the middle of a
benchmarked operation could have made the results uneven.

The benchmark results show that BLISS-B-IV is the only algorithm with faster than
or equal verification compared to RSA-3072 and ECDSA (P-256). It is also the only algo-
rithm performing better than RSA-3072 for all operations.

Figure 6.1 summarises the results of Tables 6.1, 6.2 and 6.3 and shows how all the

40 CHAPTER 6. PERFORMANCE EVALUATION

Algorithm Key generation Sign Verify
XMSS(SHA2-256_W16_H10) 4540 ms 4480 ms 2.69 ms

RSA-3072 4520 ms 12.5 ms 0.474 ms
ECDSA (P-256) 3.29 ms 18.2 ms 2.81 ms

Table 6.1: Average running times using the Botan Cryptography API

Algorithm Key generation Sign Verify
SPHINCS-256 12.6 ms 236 ms 2.73 ms

Rainbow(256,31,21,22) 5770 ms 2.03 ms 1.85 ms
RSA-3072 2810 ms 25.1 ms 0.512 ms

ECDSA (P-256) 0.924 ms 0.553 ms 0.478 ms

Table 6.2: Average running times using the Bouncy Castle Cryptography API

Algorithm Key generation Sign Verify
BLISS-B-IV 38.1 ms 1.27 ms 0.102 ms

RSA-3072 (openssl) 484 ms 4.84 ms 0.103 ms
ECDSA (P-256) (openssl) 0.101 ms 0.0941 ms 0.210 ms

Table 6.3: Average running times using the libstrongswan library (acting as openssl wrapper for
RSA and ECDSA)

post-quantum algorithms performed in relation to each other. The fastest RSA and ECDSA
times, obtained in the strongSwan benchmark, are also presented to show how the post-
quantum algorithms perform in comparison. Note that the chart uses a logarithmic scale
for its y-axis due to the large range of running times. The figure shows that BLISS-B-IV
has the best performance out of the post-quantum algorithms for both signature gener-
ation and verification. Verification times for XMSS, SPHINCS and Rainbow are all rel-
atively similar. The signing speed of Rainbow is almost on par with BLISS-B-IV, while
XMSS and SPHINCS are both several times slower.

6.2.1 Relative performance

In Table 6.4 and Table 6.5, the relative performance speedup of the post-quantum signa-
ture algorithms are presented. The relative performance shows how the post-quantum
digital signature algorithms performed in relation to RSA and ECDSA implemented in
the same library and using the same wrappers and interfaces.

Table 6.4 shows that key generation speeds were generally higher for the post-quantum
algorithms compared to RSA. The only exception is Rainbow due to the large number of
computations needed to construct a key pair. Rainbow and BLISS-B-IV had significantly
faster signing compared to RSA. The signing speed of SPHINCS-256 was roughly 8 times
slower compared to RSA. The signing speed of XMSS was more than 300 times slower
compared to RSA due to the costly key expansion mentioned earlier. Signature verifica-
tion speeds were 4-5 times slower for all algorithms except for BLISS-B-IV where it was
1.35 times faster than RSA.

Table 6.5 shows that key generation speeds of the post-quantum algorithms were all
far from the fast key generation speeds of ECDSA. Signing using the hash-based algo-

CHAPTER 6. PERFORMANCE EVALUATION 41

XMSS SPHINCS Rainbow BLISS-B RSA ECDSA

0.1

1

10

100

1,000

10,000

A
ve

ra
ge

ru
nn

in
g

ti
m

e
(m

s)
Key generation
Sign
Verify

Figure 6.1: Comparison of average running times for all post-quantum algorithms and the fastest
implementations of RSA and ECDSA (note that the y-axis is logarithmic)

42 CHAPTER 6. PERFORMANCE EVALUATION

Algorithm Key generation Sign Verify
XMSS(SHA2-256_W16_H10) 1x 0.003x 0.2x

SPHINCS-256 200x 0.1x 0.2x
Rainbow(256,31,21,22) 0.5x 10x 0.3x

BLISS-B-IV 10x 4x 1x
RSA-3072 1x 1x 1x

Table 6.4: Average running time speedup compared to RSA-3072 for key generation, signature
generation and signature verification

Algorithm Key generation Sign Verify
XMSS(SHA2-256_W16_H10) 0.0007x 0.004x 1x

SPHINCS-256 0.07x 0.002x 0.2x
Rainbow(256,31,21,22) 0.0002x 0.3x 0.3x

BLISS-B-IV 0.003x 0.07x 2x
ECDSA (P-256) 1x 1x 1x

Table 6.5: Average running time speedup compared to ECDSA (P-256) for key generation, signature
generation and signature verification

rithms was several hundreds times slower compared to ECDSA, while Rainbow and
BLISS-B-IV were only 4 and 14 times slower respectively. Compared to ECDSA, signa-
ture verification speeds for BLISS-B-IV were roughly 2 times faster, XMSS was equally
fast and the other post-quantum algorithms were between 4 and 5 times slower.

The post-quantum algorithm with the best relative performance for key generation
was SPHINCS-256. Rainbow was best in regards to relative signature generation perfor-
mance and BLISS-B-IV was best in regards to relative signature verification performance.

6.3 Possible error sources

It is clear that the benchmark was not ideal since it relies on measurements from libraries
written in different programming languages and with different implementations. For ex-
ample, the arithmetic library used for RSA operation can heavily influence the running
times. In the strongSwan benchmark, where openssl is used for RSA operations, key
generation and signing are several times faster compared to the RSA implementations
in Botan and Bouncy Castle. Consequently, the relative performance speedup might be-
come higher if the RSA implementation is slower, and vice versa. Therefore, the relative
performance results are not conclusive.

Furthermore, the performance of the classical signature algorithms within the same li-
braries differed compared to each other. In general, ECDSA signing should be faster than
RSA and ECDSA verification should be slower than RSA (as has been reported in for ex-
ample [3] and measured in [37]). ECDSA performance in Botan is however significantly
worse than in Bouncy Castle and strongSwan. In Botan, ECDSA signing and verification
are both slower than RSA, while ECDSA signing is roughly 50 times faster than RSA in
Bouncy Castle and strongSwan. Furthermore, ECDSA verification in Bouncy Castle is
faster than RSA verification. These facts make the relative performance measurements
somewhat misleading. Figure 6.1 helps negate this by showing the actual performance of

CHAPTER 6. PERFORMANCE EVALUATION 43

the algorithms.
Implementation specific performance is relevant for the post-quantum algorithms as

well. A good example of this is the signature generation speed measurement of XMSS.
In the Botan cryptography API, XMSS private keys are minimised to cryptographically
secure seeds that are used to seed pseudorandom functions to generate the full keys on
demand. One major drawback with this approach is that in order to generate a signature,
the entire tree must be generated again making signature generation as slow as key gen-
eration.

Another example is SPHINCS, which can be highly vectorised using the Intel AVX2
instruction set that allows for 8-way parallel computations on 32-bit integers [32]. In the
eBACS benchmark suite, this fast implementation is roughly 4 times as fast as the refer-
ence implementation [37].

Furthermore, the benchmarking environment was not ideal since running background
processes could have impacted the measurements. The running time of the benchmarks
were however deemed long enough to ensure that any short peak in CPU usage from
background processes should have had negligible impact.

The use of libraries written in different languages was also not ideal. This was noted
by the relatively high sample standard deviation observed in the Bouncy Castle bench-
mark written in Java. A better benchmark result could have been obtained by writing
implementations for the post-quantum algorithms for the same cryptographic library.
That approach does however also have some pitfalls, namely that the performance can
be influenced by the author.

Even though the benchmark presented in this thesis was not optimal, it still gives
some valuable results and observations. The benchmark gives concrete measurements
for how the post-quantum algorithms implemented in the different libraries performs
in comparison to each other. The relative performance measurements can also be used
as guidance for anyone making a choice to switch from a classical algorithm to a post-
quantum algorithm in the same library.

6.4 Post-quantum X.509 certificates

In addition to the performance benchmarks where arbitrary messages were signed, self-
signed X.509 certificates were generated for the post-quantum algorithms where the li-
braries allowed it. This was done as a proof-of-concept to show that post-quantum cer-
tificates could be generated and theoretically used in practice by PKIs today. Certificates
were generated for SPHINCS-256, Rainbow(256,31,21,22) and BLISS-B-IV. Naturally, since
none of the post-quantum algorithms were supported in more than one library, the gen-
erated post-quantum certificates could only be properly used by entities with access to
the same cryptographic libraries.

The most time-consuming part of generating an X.509 certificate should be to gen-
erate the signature and the overhead from other operations should be negligible. This
notion was confirmed for SPHINCS, BLISS and RSA by comparing signature generation
and certificate generation times. However, generating and verifying certificates using the
Rainbow algorithm in Bouncy Castle was several times slower compared to generating
and verifying signatures for arbitrary strings. Some minor changes to the Bouncy Castle
source code was required to allow X.509 certificate generation using Rainbow which indi-
cated that full support for the algorithm was not present, which might explain the poor

44 CHAPTER 6. PERFORMANCE EVALUATION

performance. Further reasons for the slowdown were not investigated.

Chapter 7

Discussion

In this chapter, the results from the literature study and the benchmarking are discussed
in order to answer the research question of this thesis. The benchmark results form the
basis for the recommendation on which post-quantum algorithm could be used today,
with support from the literature study. Some more general discussions about the future
of PKI and digital signatures are also backed by the results of the literature study. Some
generalisations of the different categories of post-quantum algorithm are made in order
to make better recommendations for the PKI community.

7.1 Discussion on post-quantum algorithms

It is clear from the literature study and the benchmarking that even though several post-
quantum signature algorithms exist, they are all lacking in some aspects when compared
to algorithms used in PKI today. Hash-based signature schemes seem to have the most
robust security but they come at the price of having a limited number of signatures, large
signature sizes and in the case of SPHINCS, degraded security for each new signature
generated. Multivariate-based signature schemes provide efficient signing and very small
signatures but the key sizes are very large. Lattice-based signature schemes seem to pro-
vide the overall most efficient schemes with relatively small key sizes, small signatures
and efficient signature operations. However, the estimated security levels of multivariate-
based and lattice-based schemes are not clear and have been reduced on a regular basis.
The security also relies on mathematical problems that have not been studied for very
long and could therefore be susceptible to attacks even from classical computers. Other
post-quantum digital signature schemes exist but the performance of these schemes are
so far even worse.

7.1.1 Hash-based algorithms

The verification speeds of XMSS and SPHINCS were good, when taking into account
that the Botan and Bouncy Castle libraries seemed to be slower in general compared to
strongSwan. The relative performance compared to RSA-3072 was about 5 times as slow
for both algorithms. For many applications, such a slowdown could most likely be tol-
erated if it means that robust quantum security is achieved. In the future, more efficient
hash functions could also be developed, which could speed up the performance of all

45

46 CHAPTER 7. DISCUSSION

hash-based signature schemes. Furthermore, if a hash function used in a hash-based sig-
nature scheme is shown to have a vulnerability it is easy to replace it.

The signing speed of the XMSS implementation in the benchmarked version of Botan
was however very slow. This slow signing could be tolerated for signers where signing is
not time critical, such as signing of legal documents or code signing, For PKIs however,
a 4 second signing operation on for example OCSP responses would be a considerable
overhead. Making the Botan implementation as efficient as the optimised reference im-
plementation found at https://huelsing.wordpress.com/code/, that signs mes-
sages in about 20 ms, would make it more usable. The fact that an Internet Draft exists
for XMSS also make paves the way for standardisation in a foreseeable future.

The large signature sizes of hash-based signature schemes, especially XMSSMT and
SPHINCS, could be a problem for applications where signatures are generated often and
for relatively small messages. In the case of X.509 certificates, a 41 kB SPHINCS signature
is roughly 100 times as large as the combined size of other fields in the certificate, ex-
cluding the public key. If a large public key size is included in the certificate, for example
a McEliece encryption key or Rainbow key, the signature size will have less importance.
Public keys for hash-based or lattice-based signature scheme have however been shown
to be small in general.

The property of having a limit on the number of maximum number of signatures that
can be generated from a singe key pair is another negative aspect of hash-based signa-
ture schemes, including the stateless SPHINCS. Being able to generate a limited number
of signatures will most likely not pose a problem for most CAs and PKI users since the
total number of signatures generated is generally low. If a CA needs to issue and sign a
large number of certificates, it is more likely to distribute the load on intermediate CAs,
who will use separate key pairs.

The degradation of security for each signature generated might however still pose a
problem when it comes to standardisation. For example, NIST’s requirements for post-
quantum digital signature schemes to be standardised include the following criteria:

“For the purpose of estimating security strengths, it may be assumed that the attacker
has access to signatures for no more than 264 chosen messages; however, attacks involv-
ing more messages may also be considered.” [7]

For SPHINCS-256, the security would be severely degraded by attackers of the above
type. One way to protect against too many signatures being generated is to make SPHINCS
stateful in the sense that a counter counts the number of generated signatures. The counter
would not need to be as exact as the index in XMSS and the private key can be backed
up or used for distributed signing. The difficulty lies in synchronising all signers with
the counter. A simple way would be to make an interface for reading and updating the
counter available online to all signers who could synchronise with it daily or maybe even
more seldom. The computationally heavy signing operation does however help by mak-
ing it difficult to reach a high number of generated signatures too quickly.

The overall security of hash-based signature schemes does however feel relatively
well understood compared to other possibly post-quantum secure schemes. The fact that
the security of hash-based signature schemes relies solely on the properties of crypto-
graphic hash functions is a strong argument for using them in favour of schemes relying
on less understood mathematical problems. If an attack against a specific hash function
used in the signature scheme is found, then it is simple to replace it. For other types of
schemes, such as lattice-based and multivariate-based schemes, an attack against the un-

CHAPTER 7. DISCUSSION 47

derlying mathematical problem would most likely lead to a complete breakage of the
scheme. Furthermore, hash functions are necessary for other types of signature schemes
as well meaning that if an efficient attack exists against hash-based signature schemes
then the same attack could possibly be used against other schemes relying on hash func-
tions as well.

7.1.2 Lattice-based algorithms

In the performance benchmark, BLISS-B-IV outperformed the other post-quantum signa-
ture algorithms and was even faster than RSA for all operations. The signature and key
sizes are also on levels comparable to RSA. This would make BLISS a suitable successor
if only the security was as clear as for hash-based signature schemes. Unfortunately, the
security remains an open question due to the recent cryptanalyses of BLISS that found
several problems with the BLISS scheme. Even though the flaws can be corrected, the
confidence in the security of the scheme is somewhat damaged.

Lattice-based cryptography is interesting due to efficient algorithms such as BLISS but
it seems that more research needs to be carried out in the field to increase confidence in
the security of lattice-based schemes.

7.1.3 Multivariate-based algorithms

The performance benchmark showed that Rainbow had very good signing performance
and verification speeds were also relatively fast. The only downside was the long key
generation times, which is not a big problem for most applications, and lower estimated
security compared to other post-quantum schemes. However, other studies have claimed
that more efficient parameter sets than the one used in the benchmarks achieves an esti-
mated quantum security of 128 bits, for example [3]. It is unclear how they have come to
that conclusions and if it is correct, but it might indicate that the parameter set used in
the benchmark could be more secure than previously stated.

The characteristics of multivariate-based schemes, with very small signature but large
key sizes, offer an interesting alternative to other post-quantum algorithms. In applica-
tions where key sizes are of little importance, multivariate-based signature algorithms
such as Gui, with 21 byte signatures, can even be more efficient than ECDSA (P-256) that
has 64 byte signatures. The security of multivariate-based schemes is however still uncer-
tain.

7.2 Post-quantum algorithms for certificate signing

The process to use an arbitrary post-quantum algorithm for certificate signing is rela-
tively simple. First, an algorithm identifier for the signature and the subject public key
needs to be agreed upon by all parties planning on using the post-quantum algorithm.
The algorithm identifier consists of an object identifier (OID) and any optional param-
eters. Secondly, the format of the signature and the subject public key must be agreed
upon. Lastly, all parties must be able to generate and verify signatures using the post-
quantum algorithm. If all these steps are achieved, the post-quantum algorithm can be
fully used in the X.509 certificate standard. The biggest factor in achieving the steps seems
to be standardisation. Once standardisation institutes decide on algorithms to standard-

48 CHAPTER 7. DISCUSSION

ise, cryptographic libraries will most likely be quick to implement the algorithms in the
library.

The flexibility of the X.509 standard allows for a smooth transition to post-quantum
certificates. Furthermore, post-quantum signature algorithms available today operate in a
similar way to their classical counterparts, that is the signer has a private key for gener-
ating signatures and the verifier uses the signer’s public key to verify the signature. The
exception is XMSS and other stateful hash-based signature schemes since the statefulness
can be problematic in many ways.

For an organisation to make the transition from classical algorithms to XMSS, they
would not only need to update all systems in the PKI to handle the new algorithm but
they would also need to make major changes to how private signature keys are handled.
This includes setting up rigorous rules for how backup and distribution of private keys
can be performed, if possible at all. Some ideas, like reserving partitions of the index
space, have been presented in papers such as [60] and could make XMSS easier to use.
However, companies looking to make a transition to post-quantum cryptography in the
near future will most likely look for alternatives more similar to classical signature algo-
rithms to avoid having to make large structural changes.

To this end, SPHINCS seems to be a more attractive candidate for a hash-based post-
quantum signature schemes being adopted by companies and organisations. The fact that
SPHINCS is available in a widely used cryptographic API makes it likely that some com-
panies and organisations might start offering support for it soon. However, for widespread
deployment the algorithm would need be standardised.

7.2.1 Recommendations for the PKI community

The need to use post-quantum algorithms for signing certificates in PKIs is perhaps not
as crucial as finding post-quantum encryption and key-exchange schemes. This is be-
cause most certificates are only valid for a couple of years. However, some signatures
and also some certificates, such as root CA certificates or TSA certificates, might need
to be valid for 10 years or more. Therefore, some recommendations for the PKI commu-
nity can be helpful to guide preparations. It should however be noted that with the cur-
rent uncertainty of both classical security and quantum security for most post-quantum
schemes, switching to a post-quantum digital signature algorithm should only be done
when using classical algorithms is not a choice. For example, if it becomes known that a
quantum computer actually capable of breaking RSA and ECDSA exists.

CAs aimed towards the general public, such as CAs issuing TLS certificates, can not
use post-quantum algorithms today due to the fact that all entities using a PKI must
be able to handle the signature algorithm used. PKI vendors could however start of-
fering support for post-quantum algorithms for everyone wanting to use them in more
closed settings where they know that all entities in the PKI will be able to handle the
post-quantum algorithm.

Making a transition to using XMSS, SPHINCS or Rainbow can be relatively simple
if the widely used Botan or Bouncy Castle cryptographic library is already used in the
PKI. Switching to BLISS is however not as easy since the libstrongswan library, although
available under the GNU General Public License 2.0, is most likely currently not used by
many applications outside of the strongSwan VPN suite.

For the purpose of certificate signing, the most secure post-quantum alternative with

CHAPTER 7. DISCUSSION 49

regards to estimated bit security seems to be XMSS or XMSSMT. However, if the state-
fulness of the schemes is not handled correctly, the security effectively becomes zero.
XMSS can therefore not be recommended for use in PKIs today unless the risks of hav-
ing a stateful signature scheme are understood and handled correctly. One way to handle
the risks might be to keep the XMSS private key in a strictly confined HSM environment.
The stateless scheme SPHINCS can however be recommended for all PKIs where the
number of generated signatures from a single key pair is somewhat limited and where
large signature sizes and relatively long signature generation times are not a problem.
This is because the security of hash-based algorithms seems to be quite well-understood.

Rainbow and other multivariate-based signature schemes could potentially be used
for signing root certificates or be used in other protocols that do not require the public
key to be distributed often. In the case of root certificates, the certificate is usually only
distributed once during initial set-up of a system. A certificate with a public key size of
over 100 kB is in this case not a problem, compared to certificates that are transmitted
often. However, since root certificates need to be secure for a long time and the security
of Rainbow is somewhat uncertain it can not be recommended for general use in PKIs
today.

The security of BLISS is also somewhat uncertain even though recent cryptanalyses
has helped patching some problems with the scheme. However, if a lower and more un-
certain security level can be tolerated in exchange for a more efficient scheme, BLISS is a
promising alternative that can be recommended. It must however be noted that even the
classical security of BLISS and other lattice-based systems is uncertain and it will most
likely take time until the security estimates of lattice-based schemes are trusted.

7.3 Transitioning to a post-quantum PKI

The post-quantum signature algorithms available today could all theoretically be used
for signing in PKIs. There is no need make any significant changes to existing infrastruc-
tures other than to transition to using new algorithms, except in the case of stateful hash-
based signature schemes. To make the transition to a post-quantum PKI easier it might
be good to start moving towards it as soon as possible by support post-quantum algo-
rithms for everyone interested in using them. This should be easier than to start transi-
tioning when large-scale quantum computers are already available.

Some of the biggest hindrances today seem to be the fast development of new post-
quantum algorithms and lack of standardisation. With new, promising algorithms being
presented every year, spending development time to test and implement the algorithms
can seem wasteful considering the fact that quantum computers still do not exist.

One way to promote the transition towards a post-quantum PKI, without necessarily
breaking current functionality, might be to start using multiple signing keys and certifi-
cates for some applications. For example, code and document signing allows multiple
signers. This feature can be used to generate signatures using both a classical algorithm
and a post-quantum algorithm. By doing this, the verifier could choose to either ignore
the post-quantum signatures (thus not breaking nor requiring any extra functionality) or
verify both the classical signature and the post-quantum signatures to have a stronger
verification that the code or document is authentic. For legal documents for example, it
could be a good idea to start signing documents with an additional post-quantum algo-
rithm as soon as possible to avoid being in a position where the validity of the classical

50 CHAPTER 7. DISCUSSION

signatures, and thus the authenticity of the documents, is questioned. Blockchain tech-
niques is another interesting option that could be considered.

One thing identified in this thesis is that post-quantum signature sizes are in many
cases larger compared to classical signatures. This will become less of an issue as pro-
cessing power and available storage keeps increasing in the future, but it could still be
important to find ways to make a post-quantum PKI more efficient.

One idea to make communication in the post-quantum PKI more efficient is to start
caching more certificates. This should not pose a problem as long as the revocation sta-
tus of a certificate is still checked every time it is to be used for verification. This change
would require changes in several different protocols. However, protocol changes will
most likely be needed anyway due to restrictions on public key and signature sizes. Pub-
lic key and signature sizes have often been presumed to be relatively small, as is the case
with RSA and ECDSA. Post-quantum algorithms with larger sizes might therefore not be
usable unless the protocol specifications are updated.

7.3.1 Ethical and environmental aspects

The development of a post-quantum PKI will ensure that people and businesses can
communicate securely even if large-scale quantum computers are available. Large-scale
quantum computer will most likely be available to governments before the general pub-
lic has access to them, given the great amount of research and funds required to build
one. This raises an ethical question since governments with access to a large-scale quan-
tum computer would be able to effectively spy on criminals if they use classical cryptog-
raphy.

The same type of espionage used on people with criminal intent could however of
course be used on law-abiding citizens and companies as well. This would be a huge
threat to peoples’ rights to privacy and freedom of speech on the Internet. Even the United
Nations has stated that encryption and anonymity deserve strong protection since it en-
ables individuals to exercise their right to freedom of opinion and expression in the dig-
ital age [61]. The development of a post-quantum PKI can therefore be seen as a neces-
sary step to protect the rights of people worldwide and to help promote free, democratic
societies free from excessive surveillance.

The environmental impact of post-quantum PKIs in comparison to PKIs today, will
most likely not be significantly higher. It is however clear that the energy consumption
of devices in the PKI will increase if the computation times needed for the signature
algorithm increases. In the case of PKI for the IoT, this increased power consumption
could make a somewhat noticeable environmental impact if the number of IoT devices
is very large. In order to limit the impact, efficient signature algorithms should be used.
This goes hand in hand with scientific interests and company interests, which means that
the industry will be adopting more efficient algorithms as soon as they are deemed se-
cure enough to be used.

Chapter 8

Conclusions

Quantum computers pose a threat to cryptography as we know it and thus PKIs are
threatened as well. Luckily, there has been much research on post-quantum cryptography
in the last decade and several interesting alternatives to RSA and other classical digital
signature schemes have been proposed.

The survey conducted in this thesis found several post-quantum digital signature al-
gorithms that could potentially be used in PKIs today. Hash-based XMSS and SPHINCS,
multivariate-based Rainbow and lattice-based BLISS-B were all available in cryptographic
libraries. Furthermore, SPHINCS, Rainbow and BLISS-B already had support for X.509
certificate operations. The post-quantum algorithms did however suffer from either highly
uncertain security, lack of efficiency or both. The benchmarks conducted in this study
showed that BLISS-B had the most efficient implementation. Security-wise, the hash-
based signature schemes are better alternatives since they seem to provide stronger se-
curity due to the fact that security only relies on the properties of cryptographic hash
functions. The most practical hash-based scheme SPHINCS could be recommended for
use but then there is a need to handle 41 kB signatures that take a relatively long time to
generate.

In conclusion, this thesis has found that although several post-quantum algorithms
exist and have working implementations, there are still some to obstacles to widespread
deployment and use in PKI. The perhaps biggest obstacle is the lack of trust in the se-
curity of post-quantum algorithms. Much more research will need to be done before in-
dividuals and companies will have much trust in their security. Lack of standardisation
is another obstacle that needs to be dealt with before post-quantum algorithms can start
being widely used in the PKI industry and other fields. Standardisation institutes have
started looking at post-quantum algorithm standardisation and they will hopefully find
suitable candidate algorithms in the next couple of years.

8.1 Future work

Some interesting future work could be to implement interesting post-quantum algorithms
without high-grade implementations in a cryptographic library to allow X.509 certificate
operations. This could help bring attention to the threat of quantum computers to any-
one using the cryptographic library and showing that practical post-quantum algorithms
exist.

Another interesting aspect to study could be to measure and compare the amount

51

52 CHAPTER 8. CONCLUSIONS

of entropy needed for randomness during key generation, signing and verification for
different post-quantum and classical signature schemes. This could help guide product
development for environments where the entropy pool is small.

There is also still need for more research in the field of post-quantum cryptography.
Mainly, further cryptanalysis on the security of existing post-quantum algorithms is needed
and more efficient algorithms with robust security need to be developed.

Bibliography

[1] Bruce Schneier. Applied cryptography. John Wiley & Sons, 1996. ISBN 0-471-11709-9.

[2] Johannes A Buchmann, Evangelos Karatsiolis, and Alexander Wiesmaier. Introduction
to public key infrastructures. Springer Science & Business Media, 2013.

[3] M Campagna, L Chen, Ö Dagdelen, J Ding, JK Fernick, N Gisin, D Hayford, T Jen-
newein, N Lütkenhaus, M Mosca, et al. Quantum safe cryptography and security.
ETSI White Paper, 8, 2015.

[4] IBM. IBM Makes Quantum Computing Available on IBM Cloud to Accelerate Inno-
vation. https://www-03.ibm.com/press/us/en/pressrelease/49661.wss,
May 2016. Accessed: 2017-02-22.

[5] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

[6] Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray Perlner, and
Daniel Smith-Tone. Report on post-quantum cryptography. National Institute of Stan-
dards and Technology Internal Report, 8105, 2016.

[7] NIST. Submission Requirements and Evaluation Criteria for the Post-Quantum
Cryptography Standardization Process. http://csrc.nist.gov/groups/ST/
post-quantum-crypto/documents/call-for-proposals-final-dec-
2016.pdf, December 2016. Accessed: 2017-04-12.

[8] Matt Braithwaite. Experimenting with Post-Quantum Cryptography. https:
//security.googleblog.com/2016/07/experimenting-with-post-
quantum.html, July 2016. Accessed: 2017-02-23.

[9] SHS Vries. Achieving 128-bit security against quantum attacks in OpenVPN. Mas-
ter’s thesis, University of Twente, 2016.

[10] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Pro-
file. RFC 5280, RFC Editor, May 2008. URL https://www.rfc-editor.org/
info/rfc5280.

[11] M. Nystrom and B. Kaliski. PKCS #10: Certification Request Syntax Specification
Version 1.7. RFC 2986, RFC Editor, November 2000. URL https://www.rfc-
editor.org/info/rfc2986.

53

54 BIBLIOGRAPHY

[12] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–126,
1978.

[13] K. Moriarty Ed., B. Kaliski, J. Jonsson, and A. Rusch. PKCS #1: RSA Cryptography
Specifications Version 2.2. RFC 8017, RFC Editor, November 2016. URL https:
//www.rfc-editor.org/info/rfc8017.

[14] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital signa-
ture algorithm (ecdsa). International journal of information security, 1(1):36–63, 2001.

[15] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams. X.509
Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP. RFC
6960, RFC Editor, June 2013. URL https://www.rfc-editor.org/info/
rfc6960.

[16] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2.
RFC 5246, RFC Editor, August 2008. URL https://www.rfc-editor.org/info/
rfc5246.

[17] B. Ramsdell and S. Turner. Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 3.2 Message Specification. RFC 5751, RFC Editor, January 2010. URL
https://www.rfc-editor.org/info/rfc5751.

[18] B. Ramsdell and S. Turner. Secure/Multipurpose Internet Mail Extensions (S/MIME)
Version 3.2 Certificate Handling. RFC 5750, RFC Editor, January 2010. URL https:
//www.rfc-editor.org/info/rfc5750.

[19] C. Adams, P. Cain, D. Pinkas, and R. Zuccherato. Internet X.509 Public Key Infras-
tructure Time-Stamp Protocol (TSP). RFC 3161, RFC Editor, August 2001. URL
https://www.rfc-editor.org/info/rfc3161.

[20] TS ETSI. 102 023 V1. 2.2 (2008-10), Electronic Signatures and Infrastructures (ESI).
Policy requirements for time-stamping authorities.

[21] CSS Technical Team. 2016 Public Key Infrastructure (PKI) and Internet of Things
(IoT) Security Predictions. https://blog.css-security.com/ctoblog/
2016-public-key-infrastructure-pki-and-internet-of-things-iot-
security-predictions, December 2015. Accessed: 2017-05-16.

[22] Tao Zhang and Luca Delgrossi. Vehicle Safety Communications Protocols, Security, and
Privacy. Information and Communication Technology Series. Wiley, Hoboken, 2012.
ISBN 1-118-13272-6.

[23] Daniel J Bernstein, Johannes Buchmann, and Erik Dahmen. Post-quantum cryptogra-
phy. Springer Science & Business Media, 2009.

[24] Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceed-
ings of the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219.
ACM, 1996.

[25] John Proos and Christof Zalka. Shor’s discrete logarithm quantum algorithm for
elliptic curves. arXiv preprint quant-ph/0301141, 2003.

BIBLIOGRAPHY 55

[26] Arjen K Lenstra. Key lengths. Technical report, Wiley, 2006.

[27] John Rompel. One-way functions are necessary and sufficient for secure signatures.
In Proceedings of the twenty-second annual ACM symposium on Theory of computing, pages
387–394. ACM, 1990.

[28] Denis Butin, Stefan-Lukas Gazdag, and Johannes Buchmann. Real-world post-
quantum digital signatures. In Cyber Security and Privacy Forum, pages 41–52.
Springer, 2015.

[29] Leslie Lamport. Constructing digital signatures from a one-way function. Technical
report, Technical Report CSL-98, SRI International Palo Alto, 1979.

[30] Ralph C Merkle. A certified digital signature. In Conference on the Theory and Applica-
tion of Cryptology, pages 218–238. Springer, 1989.

[31] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS-a practical forward
secure signature scheme based on minimal security assumptions. In International
Workshop on Post-Quantum Cryptography, pages 117–129. Springer, 2011.

[32] Daniel J Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben Nieder-
hagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and Zooko
Wilcox-O’Hearn. Sphincs: practical stateless hash-based signatures. In Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques, pages
368–397. Springer, 2015.

[33] Denis Butin, Andreas Hülsing, Aziz Mohaisen, and Stefan-Lukas Gazdag. XMSS:
Extended Hash-Based Signatures. Internet-Draft draft-irtf-cfrg-xmss-hash-based-
signatures-09, Internet Engineering Task Force, March 2017. URL https://
datatracker.ietf.org/doc/html/draft-irtf-cfrg-xmss-hash-based-
signatures-09. Work in Progress.

[34] Andreas Hülsing, Lea Rausch, and Johannes Buchmann. Optimal parameters for
xmss mt. In International Conference on Availability, Reliability, and Security, pages 194–
208. Springer, 2013.

[35] Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating multi-target attacks
in hash-based signatures. In Public-Key Cryptography–PKC 2016, pages 387–416.
Springer, 2016.

[36] Botan. Botan: Crypto and TLS for C++11. https://botan.randombit.net/,
January 2017. Accessed: 2017-03-07.

[37] eBACS. eBACS: ECRYPT Benchmarking of Cryptographic Systems. https:
//bench.cr.yp.to, July 2016. Accessed: 2017-04-20.

[38] Bouncy Castle. The Legion of the Bouncy Castle Java Cryptography APIs. https:
//www.bouncycastle.org/java.html. Accessed: 2017-03-07.

[39] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice sig-
natures and bimodal gaussians. In Advances in Cryptology–CRYPTO 2013, pages 40–
56. Springer, 2013.

56 BIBLIOGRAPHY

[40] Sedat Akleylek, Nina Bindel, Johannes Buchmann, Juliane Krämer, and Giorgia Az-
zurra Marson. An efficient lattice-based signature scheme with provably secure in-
stantiation. In International Conference on Cryptology in Africa, pages 44–60. Springer,
2016.

[41] James Howe, Thomas Pöppelmann, Máire O’Neill, Elizabeth O’Sullivan, and Tim
Güneysu. Practical lattice-based digital signature schemes. ACM Transactions on
Embedded Computing Systems (TECS), 14(3):1–24, May 2015. ISSN 1539-9087.

[42] Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Cryptanalysis of ggh
and ntru signatures.(report). Journal of Cryptology, 22(2), April 2009. ISSN 0933-2790.

[43] Rebecca Staffas. Post-quantum lattice-based cryptography. Master’s thesis, Royal
Institute of Technology, 2016.

[44] Léo Ducas. Accelerating bliss: the geometry of ternary polynomials. IACR Cryptology
ePrint Archive, 2014:874, 2014.

[45] Markku-Juhani O Saarinen. Arithmetic coding and blinding countermeasures for
lattice signatures. Journal of Cryptographic Engineering, pages 1–14, 2017.

[46] BLISS: Bimodal Lattice Signature Schemes. http://bliss.di.ens.fr/. Accessed:
2017-03-14.

[47] strongSwan. Bimodal Lattice Signature Scheme (BLISS). https://wiki.
strongswan.org/projects/strongswan/wiki/BLISS, 2016. Accessed: 2017-
03-14.

[48] Saarinen, Markku-Juhani O. Reference implementation of the BLZZRD variant of
the BLISS Ring-LWE Signature Scheme. https://github.com/mjosaarinen/
blzzrd, 2016. Accessed: 2017-03-14.

[49] Albrecht Petzoldt, Stanislav Bulygin, and Johannes A Buchmann. Selecting param-
eters for the rainbow signature scheme-extended version-. IACR Cryptology ePrint
Archive, 2010:437, 2010.

[50] Albrecht Petzoldt, Ming-Shing Chen, Bo-Yin Yang, Chengdong Tao, and Jintai
Ding. Design Principles for HFEv- Based Multivariate Signature Schemes, pages 311–334.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2015. ISBN 978-3-662-48797-6. doi:
10.1007/978-3-662-48797-6_14. URL https://dx.doi.org/10.1007/978-3-
662-48797-6_14.

[51] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polynomial signature
scheme. In International Conference on Applied Cryptography and Network Security, pages
164–175. Springer, 2005.

[52] Albrecht Petzoldt, Stanislav Bulygin, and Johannes Buchmann. Selecting Parameters
for the Rainbow Signature Scheme, pages 218–240. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010. ISBN 978-3-642-12929-2. doi: 10.1007/978-3-642-12929-2_16. URL
https://dx.doi.org/10.1007/978-3-642-12929-2_16.

BIBLIOGRAPHY 57

[53] Daniel J. Bernstein and Tanja Lange. Post-quantum cryptography—dealing with
the fallout of physics success. Cryptology ePrint Archive, Report 2017/314, 2017.
https://eprint.iacr.org/2017/314.

[54] Robert J McEliece. A public-key cryptosystem based on algebraic. Coding Thv, 4244:
114–116, 1978.

[55] Daniel J Bernstein, Tung Chou, and Peter Schwabe. Mcbits: fast constant-time code-
based cryptography. In International Workshop on Cryptographic Hardware and Embedded
Systems, pages 250–272. Springer, 2013.

[56] Aurélie Phesso and Jean-Pierre Tillich. An efficient attack on a code-based signa-
ture scheme. In International Workshop on Post-Quantum Cryptography, pages 86–103.
Springer, 2016.

[57] Dustin Moody and Ray Perlner. Vulnerabilities of “mceliece in the world of escher”.
In International Workshop on Post-Quantum Cryptography, pages 104–117. Springer,
2016.

[58] Steven D. Galbraith, Christophe Petit, and Javier Silva. Signature schemes based on
supersingular isogeny problems. Cryptology ePrint Archive, Report 2016/1154, 2016.
https://eprint.iacr.org/2016/1154.

[59] Youngho Yoo, Reza Azarderakhsh, Amir Jalali, David Jao, and Vladimir Soukharev.
A post-quantum digital signature scheme based on supersingular isogenies. Cryptol-
ogy ePrint Archive, Report 2017/186, 2017. https://eprint.iacr.org/2017/
186.

[60] David McGrew, Panos Kampanakis, Scott Fluhrer, Stefan-Lukas Gazdag, Denis
Butin, and Johannes Buchmann. State management for hash-based signatures. In
Security Standardisation Research, pages 244–260. Springer, 2016.

[61] David Kaye. Report on encryption, anonymity, and the human rights framework.
Report of the special rapporteur on the promotion and protection of the right to freedom of opin-
ion and expression, 22, 2015.

Appendix A

Full benchmark results

The full results of the benchmarks, including median running times and sample standard
deviations, are presented in Tables A.1, A.2 and A.3. The average running times are high-
lighted for easier comparison between different algorithms.

Key generation Sign Verify
Algorithm Mean Median Std Dev Mean Median Std Dev Mean Median Std Dev

XMSS(SHA2-256_W16_H10) 4540 ms 4540 ms 8.75 ms 4480 ms 4483 ms 8.66 ms 2.69 ms 2.68 ms 0.0841 ms
RSA-3072 4520 ms 4070 ms 2780 ms 12.5 ms 12.5 ms 0.177 ms 0.474 ms 0.473 ms 0.00214 ms

ECDSA (P-256) 3.29 ms 3.30 ms 0.0265 ms 18.2 ms 18.2 ms 0.174 ms 2.81 ms 2.81 ms 0.0204 ms

Table A.1: Average, median and sample standard deviation of running times using the Botan
Cryptography API

Key generation Sign Verify
Algorithm Mean Median Std Dev Mean Median Std Dev Mean Median Std Dev

SPHINCS-256 12.6 ms 11.9 ms 2.11 ms 236 ms 231 ms 11.9 ms 2.73 ms 2.64 ms 0.410 ms
Rainbow(256,31,21,22) 5770 ms 5750 ms 94.0 ms 2.03 ms 1.74 ms 0.909 ms 1.85 ms 1.85 ms 0.0550 ms

RSA-3072 2810 ms 2490 ms 1700 ms 25.1 ms 25.0 ms 0.948 ms 0.512 ms 0.499 ms 0.210 ms
ECDSA (P-256) 0.924 ms 0.687 ms 0.645 ms 0.553 ms 0.523 ms 0.144 ms 0.478 ms 0.458 ms 0.171 ms

Table A.2: Average, median and sample standard deviation of running times using the Bouncy
Castle Cryptography API

Key generation Sign Verify
Algorithm Mean Median Std Dev Mean Median Std Dev Mean Median Std Dev
BLISS-B-IV 38.1 ms 36.5 ms 7.70 ms 1.27 ms 0.811 ms 0.762 ms 0.102 ms 0.102 ms 0.00267 ms

RSA-3072 (openssl) 484 ms 396 ms 351 ms 4.84 ms 4.79 ms 0.227 ms 0.103 ms 0.103 ms 0.00128 ms
ECDSA (P-256) (openssl) 0.101 ms 0.100 ms 0.00853 ms 0.0941 ms 0.0937 ms 0.00164 ms 0.210 ms 0.209 ms 0.00598 ms

Table A.3: Average, median and sample standard deviation of running times using the
libstrongswan library (using openssl for RSA and ECDSA)

58

www.kth.se

